
Concurrency and Computation: Practice and Experience

SPECIAL ISSUE PAPER OPEN ACCESS

A Multi-Layered Analysis of Energy Consumption in Spark
Nestor D. O. Volpini1, 2 | Vinícius Dias3 | Dorgival Guedes2

1Departamento de Eletroeletônica e Computação, CEFET-MG, Belo Horizonte, Brazil | 2Departamento de Ciência da Computação, UFMG, Belo Horizonte,
Brazil | 3Departamento de Ciência da Computação, UFLA, Lavras, Brazil

Correspondence: Nestor D. O. Volpini (nestor@cefetmg.br)

Received: 2 August 2025 | Revised: 2 December 2025 | Accepted: 8 January 2026

Keywords: big data | cloud allocation policies | energy consumption | experimental evaluation | monitored clouds | Spark | virtualized cloud

ABSTRACT
Although energy has become a major concern in data processing systems, it is usually hard to get a deep understanding of how
performance and energy consumption relate to each other when planning how to configure a computing environment to execute
a specific data-oriented workload. In this paper, we propose a multi-layered methodology to analyze the energy consumption
of big data workloads executed using Apache Spark in virtualized cloud environments. The approach is structured into three
layers: Resource provisioning, system-level resource utilization, and application-level resource utilization. Using direct energy
measurements using a Power Distribution Unit (PDU) and detailed system monitoring, the study investigates how infrastructure
choices and workload characteristics influence energy consumption. Results show that optimal virtual machine configurations
depend on workload type and input size; while provisioning decisions affect energy consumption, system-level metrics such as
CPU utilization and disk I/O offer a deeper understanding of the final performance versus energy consumption results. By applying
our methodology, our results reveal the impact of task distribution and resource under-utilization on overall energy efficiency. The
findings demonstrate that energy optimization in big data environments requires a comprehensive understanding of factors across
infrastructure, system, and application layers. The proposed methodology serves as a practical guide for energy-aware design and
decision-making in cloud-based data processing systems.

1 | Introduction

Considering the technological resources present in modern life,
it is possible to observe a significant growth in data generation,
which in turn demands processing to make it relevant. Sen-
sor networks, personal wearable devices, and Internet of Things
connected hardware are some examples of the high volume of
data that has been generated. On the other hand, recommen-
dation systems, machine learning algorithms, data mining, and
other recent evolutions in artificial intelligence benefit from
this data, making it relevant for some context. Cloud comput-
ing makes processing that data feasible and accessible, mainly

Abbreviations: HDFS, Hadoop File System; PDU, Power Distribution Unit; RAPL, Running Average Power Limit; RDD, Resilient Distributed Dataset; VM, virtual
machine.
--

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.

© 2026 The Author(s). Concurrency and Computation: Practice and Experience published by John Wiley & Sons Ltd.

by using resources with a cost proportional to their use, elim-
inating large initial investments for its users [1]. Cloud com-
puting, by offering virtualized resources, reduces costs for both
the provider and the user, making its use scalable and flexible,
with high service availability. The use of virtualization to pro-
cess large volumes of data is consolidated through the use of Vir-
tual Machines (VMs), decoupling processing from the physical
part, allowing the user to allocate a certain volume of resources
(cores, memory, disks, etc.) in the way that suits them [2]. Nev-
ertheless, to process such massive data sets, non-trivial big data
infrastructures are often necessary, and they usually present
non-trivial architectural tradeoffs that make it difficult to find

Concurrency and Computation: Practice and Experience, 2026; 38:e70565 1 of 21
https://doi.org/10.1002/cpe.70565

https://doi.org/10.1002/cpe.70565
https://orcid.org/0009-0003-2378-1401
https://orcid.org/0000-0002-8324-8487
mailto:nestor@cefetmg.br
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/cpe.70565
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpe.70565&domain=pdf&date_stamp=2026-02-03

the best configurations for achieving the best cost-performance
solutions.

The energy consumption demanded by that type of infrastruc-
ture is significant when processing large volumes of data. Its cost
is relevant both for cloud providers and for the environment, as it
often comes from an energy production matrix that is sustained
by emitting worrying amounts of carbon into the atmosphere [3].
According to the IEA (International Energy Agency) [4], in 2022,
datacenters consumed 1% of all energy produced worldwide,
which is a considerable share, with a forecast of reaching 8% of
the total by the end of the next decade [5]. It is important to
highlight that properly measuring energy consumption requires
a global view of computing processes, which is complex, espe-
cially for distributed systems [6]. As an example, data can be
compressed to decrease network traffic volume, leading to lower
consumption of its assets. However, that leads to an increase in
energy consumed by processors when compressing and decom-
pressing data, which needs to be considered. To determine if an
intervention reduces energy consumption, it is necessary to mea-
sure the total energy consumed from end to end.

This work is built upon three main limitations of the literature of
energy efficiency on big data workloads: (1) the lack of reliable
and accurate energy monitoring approaches, since most works
rely on partial or inaccurate measures (e.g., Intel RAPL [7]); (2)
the fact that end-to-end energy consumption in real-world work-
loads can be intricate and non-trivial to characterize; and (3)
the lack of an in-depth, interpretable methodology for study-
ing energy consumption of representative big data workloads
within modern and standard processing tools. Given such gaps,
this work evaluated five big data algorithms in a small-scale, vir-
tualized environment, using Apache Spark, a popular tool for
distributed big data processing [8, 9]. We study each algorithm
against three levels of load (light, standard, and heavy) and report
two important measures: Runtime performance, translated into
task completion time, and the total energy consumption for
each task.

Our main contributions in this work are (𝑖) a multi-layered
methodology based on accurate PDU measurements for under-
standing the energy consumption behavior of big data work-
loads from system to application, and (𝑖𝑖) an instantiation of
that methodology for some important big data algorithms cov-
ering many application domains and different scales in terms
of data volume. For reproducibility of the results, all the arti-
facts, including code and data, are available in a public repository
(https://github.com/dccspeed/pdu-spark-energy).

2 | Related Works

The work of [10] was one of the first to identify the challenges
of controlling energy consumption in big data applications.
It focused on the Apache Hadoop processing environment
and considered the control to turn machines on and off in a
cluster. Compared to Spark, Hadoop provides a simpler, more
limited programming environment, based on the map-reduce
abstractions. The simplicity of the model inspired others to
study optimization models, like [11], and Works such as [12, 13],

and [14] focused on scheduling map-reduced tasks to improve
energy consumption. Our work considers Spark, which offers a
much richer set of operators and internal optimization solutions.

Regarding the level where energy optimization is considered,
some works considered saving energy by choosing an architec-
ture [15] or by moving VMs to locations where there is renewable
energy, as in GreenNebula [16], or even at the level of “com-
putational grid federation” [17]. It is also possible to act on the
datacenter topology and adapt it to consumption [18], and also
find the best communication route [19]. On the other end of the
spectrum, there are also studies that act on the voltage and fre-
quency of processors (DVFS) [20, 21], or even consider adopting
energy-saving hardware [22]. Our decision was to understand
energy consumption at different levels of the system, but with-
out changes to Spark/operating systems internals, to consider all
possible system interactions.

Specifically, a paper by [21] proposes a scheduling framework
that reduces energy consumption in Apache Spark clusters while
maintaining application deadlines. By combining historical pro-
filing of Spark tasks with Dynamic Voltage and Frequency Scaling
(DVFS), the system predicts the energy and time requirements
of incoming jobs and dynamically adjusts CPU frequencies per
worker node. The paper reports 25%–40% energy savings, but
the authors measured energy using Intel RAPL, which does not
account for the total power consumption of the servers. As can be
seen in Reference [7], the energy measured shows a high corre-
lation with the wall plug measure; however, the loads used only
stress the CPUs. Furthermore, the authors did not consider varia-
tions in cluster configuration to the extent presented here, where
we measure the consumption of all the servers.

As previously mentioned, as a contribution, the option was made
to measure end-to-end energy consumption to avoid biases that
may arise from results that do not consider the system as a whole,
as pointed out by [6], which proved the importance of the recom-
mendations made by [23]. An interesting thesis by [24] compares
RAPL and PDUs to highlight the discrepancy of measurements
in cloud environments, demonstrating this effect through the
presented data. More along that line, another study characterizes
power measurement methods and shows that the accuracy of
RAPL-based approaches is highly dependent on workload, with
errors substantial enough to limit energy optimization when
compared to external power measurements (such as PDU) [25].
In fact, it is shown that recent datacenters organized specifi-
cally to perform inference with Large Language Models (LLM)
leverage rack-level PDUs to track power levels accurately and
support energy optimization strategies on GPU servers [26].
Overall, compared to this work, the multi-layered nature of our
results and the high-fidelity of PDU measurements set this study
apart.

This paper is an extension of previously published work ([27]),
largely expanded. Here, we improve our analysis with the
definition of a multilayer methodology, with an extensive statisti-
cal analysis, and the inclusion of the dimension of workload level
(adding light and heavy load configurations), where we consider
a degree of flexibility on the amount of resources dedicated to
each execution.

2 of 21 Concurrency and Computation: Practice and Experience, 2026

 15320634, 2026, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70565 by C

apes, W
iley O

nline L
ibrary on [04/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/dccspeed/pdu-spark-energy
https://github.com/dccspeed/pdu-spark-energy

3 | Methodology

Inspired by those previous results, this work evaluated the deter-
mining factors for composing the execution time and energy
consumption of big data scenarios, focusing on five popular
massive data processing algorithms implemented using the
Spark framework (Section 3.1). The evaluation was performed
using a monitoring structure specifically designed to collect and
integrate metrics at hardware, operating system, and application
levels (Section 3.2). The collected execution data enabled a
significantly deeper and more detailed analysis of application
behavior related to energy consumption. (Sections 4, 5,
and 6).

3.1 | Algorithms and Configurations

Five commonly used workloads in big data processing were
selected for evaluation: Terasort, K-means, PageRank, Support
Vector Machine (SVM), and Matrix Factorization. Together they
cover a variety of input data models (graphs, matrices, vec-
tors, text), algorithm domains (machine learning, information
retrieval, data mining), and execution patterns (iterative, regu-
lar or irregular, coarse- or fine-grained tasks). Next, we present
a detailed description of each algorithm.

1. Terasort [28]: An efficient benchmark implementation of a
data sorting algorithm over the Spark RDD (Resilient Distributed
Datasets) abstraction. TeraSort includes its own data generator,
TeraGen, used to create the datasets used in each test, and an
application to validate the execution results, TeraValidate. The
interest in this application in our tests was due to its intensive
use of shuffling, a communication pattern used in Spark to (re)
distribute data among executing processors, which is one of the
performance bottlenecks for this type of processing. The com-
plexity of Terasort is dominated by the sorting phase, being on
the order of 𝑂(𝑛 log(𝑛)), and can be significantly affected by the
data partitioning in a distributed system. The load, with stable
behavior, is frequently used to evaluate massive data processing
environments.

2. K-means [29]: A widely used data mining clustering
algorithm. Its performance is limited by the amount of main
memory and CPU availability. It is iterative in nature, and each
iteration is composed of two phases, where first the distances
of each datapoint to each centroid are compared to identify the
point’s nearest centroid and to assign the point to the specific
cluster. After that is done for all points, centroids are recomputed
based on the elements assigned to the cluster, and the quality of
the new clusters is assessed. Being a typically NP-hard problem,
the convergence in the search for centroids is not guaranteed in
polynomial time, so termination occurs when a predetermined
threshold is reached, usually, after a certain number of iterations.
In that case, the complexity of K-Means depends on the number
of given points (𝑁), the desired number of clusters (𝐾), the num-
ber of dimensions (𝐷) of the data, and the number of iterations
(𝑇) defined as the threshold. Based on that, the total complexity
of K-Means is given by 𝑂(𝑁𝐾𝐷𝑇).

3. PageRank [29]: Is an iterative algorithm that estimates the
importance of nodes in a network (e.g., web pages). Originally

developed by Larry Page and Sergey Brin to evaluate the impor-
tance of web pages, was initially used as part of Google’s search
engine. It can be used to evaluate the efficiency, performance, and
scalability in cluster environments, helping to identify areas for
optimization and compare performance across different config-
urations. Its complexity depends on calculating the importance
of each node in a graph based on the importance of other nodes
pointing to it. The time complexity for each iteration is 𝑂(𝐸),
where 𝐸 is the number of edges in the network/graph. The num-
ber of iterations required for PageRank to converge to a stable
value varies. The number of iterations is independent of the num-
ber of nodes and edges, but in practice, it is usually set as a
parameter, which can depend on the graph structure and desired
precision.

4. Support Vector Machine (SVM) [30]: Is a supervised
machine learning algorithm, primarily used for classification
and regression tasks. The goal of SVM is to find the hyperplane
that best separates the data, maximizing the distance between
the closest points of each class. The inherent complexity of this
algorithm comes from matrix inversion, reaching𝑂(𝑛3). Once the
optimal hyperplane is found, new data points are classified based
on which side of the hyperplane they fall.

5. Matrix Factorization (MatFact) [29]: Is an algorithm widely
used in recommendation systems and data analysis, decompos-
ing matrices into smaller factors that capture the underlying data
structure. In a distributed processing context, matrix factoriza-
tion is implemented to handle large datasets efficiently and scal-
ably. The implementation used is available in the SparkBench
benchmark, and it uses the Alternating Least Squares (ALS)
algorithm. ALS is an iterative method that seeks the best decom-
position of a matrix into two smaller factors, minimizing the
quadratic error between the original and reconstructed matrix. At
each iteration, it solves a least squares problem to update the fac-
tor matrices. The complexity per iteration is generally 𝑂(𝑀𝑁𝐾),
where 𝑀 and 𝑁 are the dimensions of the original matrices and
𝐾 is the number of factors, typically the dimensions of the decom-
position. The number of iterations to converge varies depending
on the desired precision and the characteristics of the dataset.

These algorithms are used as execution scenarios in this study.
As a first step, the configuration parameters of each scenario
were iteratively adjusted. During that calibration process, the
best practices recommended by the Spark documentation were
observed ([31]). For workloads where partitioning was not auto-
matically configured, the number of partitions was determined
according to the guidelines established in the benchmark’s best
practices. That defined a set of standard workloads, which gave
us a baseline for each algorithm in terms of the volume of input
data. Since data scientists do not always have all the information
and time for such precise configurations, we decided to include
two other scenarios, one considering that the configuration was
used on a smaller dataset (hence resulting in a ligher workload)
and another considering a dataset larger than the one used for
the configuration process (hence a heavier workload). Both light
and heavy workloads were executed under the same configura-
tion parameters defined originally by the best practices for the
standard workloads. The goal was to assess Spark behavior under
misconfigured conditions, when compared to the standard. In
general, input datasets for light and heavy loads were 50% smaller

Concurrency and Computation: Practice and Experience, 2026 3 of 21

 15320634, 2026, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70565 by C

apes, W
iley O

nline L
ibrary on [04/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

TABLE 1 | Summary of algorithms and loads used in the experimental study. The output data sizes are dependent on the input sizes, but also depend
on the specific data and the algorithms themselves.

Algorithm
Number of

spark stages Load Input Output
Shuffle
Read

Shuffle
write

Terasort 2 Light 14 GB 14 GB 7 GB 7 GB

Standard 29 GB 29 GB 15 GB 16.5 GB
Heavy 42 GB 42 GB 20.2 GB 24.7 GB

K-means 15 Light 9 GB 10 GB 2.2 MB 2.4 MB

Standard 16 GB 19 GB 4 MB 4.3 MB
Heavy 27 GB 32 GB 4.2 MB 5.5 MB

PageRank 98 Light 2.4 GB 34 MB 5.7 GB 6 GB

Standard 2.6 GB 110 MB 7.8 GB 9.4 GB
Heavy 6.3 GB 85.9 MB 14 GB 15.4 GB

Support Vector
Machine (SVM)

28 Light 8.3 GB 15.2 MB 6.6 GB 7.4 GB

Standard 16.7 GB 30.8 MB 13.2 GB 14.4 GB
Heavy 25 GB 47 MB 17 GB 21.6 GB

Matrix
Factorization
(MatFact)

66 Light 1.4 GB 1.6 GB 2.5 GB 3.3 GB

Standard 2.6 GB 2.8 GB 6.7 GB 7 GB
Heavy 4.2 GB 5.4 GB 7.9 GB 9.8 GB

FIGURE 1 | Experimental setup. Left: 3 cores per VM (2 × 3). Right: 6 cores per VM (1 × 6).

or 50% larger than the standard load considered for parameter
configuration. In a few cases, the larger dataset had to be trimmed
down due to limitations of the execution environment. Table 1
summarizes the characteristics of the evaluated loads, including
the number of stages in each and the volume of data effectively
processed in critical tasks. The highlighted characteristics con-
tributed to generating a diversity of behaviors capable of stressing
the processing environment.

3.2 | Experimental Environment

Figure 1 illustrates the execution and monitoring environment
used for our comprehensive performance and energy consump-
tion analysis. The architecture comprises a centralized Controller
(Driver), which orchestrates tasks across (up to) six individual

Worker nodes. Each Worker is a physical server that hosts one
or multiple VMs. Energy to all servers was provided through
a Power Distribution Unit (PDU) capable of measuring energy
consumption continuously during the experiments, to provide
comprehensive energy numbers and not just that provided by
CPU counters. A Sensu Agent is deployed on each Worker for col-
lecting OS execution metrics. All Workers were configured to save
data in their Spark History Servers to gather application run-time
level metrics. The system incorporates a multi-layered System
Monitoring infrastructure that integrates data from all Sensu
Agents, the PDU outlets, and the Spark History Servers. This
setup allows a detailed, end-to-end monitoring of system behav-
ior, resource utilization, and energy consumption during big
data processing tasks, enabling a comprehensive analysis of effi-
ciency at different levels. Part of the physical machine resources
was reserved for the hypervisors to monitor performance and

4 of 21 Concurrency and Computation: Practice and Experience, 2026

 15320634, 2026, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70565 by C

apes, W
iley O

nline L
ibrary on [04/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

consumption metrics, and another part was designated for
application execution. This separation was made to minimize
the impact of monitoring on the monitored executions.

One of the goals of this analysis was to consider the impact of dif-
ferent cluster configurations under the same budget restrictions:
In cloud environments, users can not only choose how many
workers they want to use, but also the internal configuration of
each machine. For the same budget, it is possible, for example, to
deploy many small workers or a few larger ones. To include some
of that in our experiments, we maintained the same total number
of physical Workers (six) and the same total number of cores allo-
cated per Worker (six), but considered one case where one large
VM was used per worker (with six cores in it), and another case
where the six cores of each worker were divided into two smaller
VMs with three cores each. During experiments, when using dif-
ferent VM sizes, we kept the total number of cores allocated equal
to allow us to compare different configurations for basically the
same resource budget. These two configurations allow a direct
comparison of the impact of VM granularity (i.e., using more
smaller VMs versus fewer larger VMs) on big data application
performance, resource utilization, and energy consumption. This
setup was crucial for understanding how the virtualized environ-
ment itself, and not just the raw number of cores, influences the
efficiency of distributed computing workloads.

3.2.1 | Execution Environment

Applications were executed on Apache Spark v2.2.0, using the
Hadoop/Hadoop File System (HDFS) v2.9.1 file system with
replicas to offer minimal redundancy and provide agility in read-
ing/writing from discs and the network. We adopted a replication
factor of two to ensure that most input data were read locally, in
the same VM as the computing tasks. Our cluster did not span
multiple racks, so the use of three replicas to span more than
one rack and still have at least two replicas in one rack was not
necessary. In particular, a replication factor of two in our experi-
ments was enough to guarantee that only 4.26% and 4.4% of Spark
tasks, for heavy and light loads respectively, were not scheduled
locally with data across all the experiments and configurations.
The allocation unit size used was 128 MB. The resource man-
ager used was Yarn, already provided with Spark. For provision-
ing and orchestrating the virtual machine environment, we used
OpenStack Pike version on an Intel Core-i7 2600 3.4 GHz physical
server with 16 GB of RAM. For the VMs, 6 Intel Xeon E5-2620v4
2.1 GHz servers were used, each with 8 cores (16 threads) and
32 GB of RAM, two Gigabit Ethernet network interfaces, and a
2 TB SATA disk, running on the QEMU-KVM 2.10.1 hypervisor
over GNU/Linux Ubuntu 16.04, Kernel 4.4.0.

3.2.2 | Resource Provisioning Configuration

For the tests, not all processing cores nor all RAM in each server
were made available, to establish a reserve for the hypervisor [32].
Concerning resource provisioning, from 3 to 6 physical servers
were offered, adding one at a time, which corresponded to offer-
ing from 18 to 36 cores in increments of 6 cores at a time. From a

consumption perspective, machines not taking part in a scenario
were powered down so as not to affect the results. However, it
is important to consider that every time a physical machine is
added, there is a significant increase in the latent energy con-
sumption 𝑃0 even when the machine is under no processing load.
Since consumption is given by the integration of power over time,
the question to be answered was: Does the acceleration obtained
for task completion justify the increase in total consumption?
As previously mentioned, the tests performed included either
one VM per physical server with 6 cores and 30 GB of memory
(1 × 6), or two VMs with 3 cores on each physical server, each
with 15 GB of RAM (2 × 3). This allowed us to evaluate the impact
of using more (2 × 3) or fewer (1 × 6) VMs while maintaining the
same total resource quantity. The resource provisioning at the
application level in Spark was a one-to-one mapping between
VMs and executors, that is, in one VM with 3 cores, we instan-
tiate one single Spark executor also with 3 cores. The same rea-
soning is adopted for VMs with 6 cores. The parallelism level of
Spark is set to the default (total number of cores on all executor
nodes). Such a design choice mitigates experimental noise since
one virtual core (VM and executor level) is always mapped to one
physical core. Unless otherwise specified, all the other resource
provisioning factors were left unchanged to enforce a realis-
tic setting—including disk optimization among VMs, processor
affinity, Spark scheduling policies, and other configurations.

3.2.3 | Monitoring Environment

To monitor active power, voltage, current, and the consumption
of each server, we used the Raritan PX-2 Series 5000 PDU, with 1%
accuracy (ISO/IEC 62053-21 standard). To record data on proces-
sor utilization, disk usage, memory occupation, machine loads,
network traffic, and energy consumption, as well as Spark exe-
cution logs for capturing metrics at the application, Yarn, and
HDFS levels, a container-based monitoring cluster [33] was set
up, consisting of 3 Intel Core-i7 2600 3.4 GHz physical servers
with 16 GB of RAM. All physical servers, including those of the
workers where the executor VMs are launched, were indepen-
dently connected to the PDU outlets. The active power consumed
by the servers and assets was recorded along with infrastructure
metrics. The monitoring environment used open-source tools:
Collectd for interfacing with the PDU to collect energy, Sensu
for monitoring the processor, memory, disk, and network. Rab-
bitMQ was used for queue management. InfluxDB was used for
time series storage, and Grafana for data visualization through
dashboards. We estimated the energy consumed by each execu-
tion as 𝐸 = (

∑N
𝑖=1𝑃𝑖)∕𝑁 ∗ (𝑡∕3600), that is, the energy consumed

in watt-hours is given by the average power measured on equally
spaced intervals, multiplied by the duration of the application.

Overhead due to monitoring (Table 2). Concerning the deploy-
ment with 3-core VMs (more VMs), we observe a median (50th
percentile) relative increment of 2.71% and 1.54% to runtime and
energy, respectively, when the monitoring is turned on (11.49%
and 9.62% at the 90th percentile). Concerning the deployment
with 6-core VMs (fewer VMs), under the same circumstances, a
5.67% increase for runtime and 5.82% increase for energy at the
median (9.96% and 14.51% at the 90th percentile). Hence, our

Concurrency and Computation: Practice and Experience, 2026 5 of 21

 15320634, 2026, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70565 by C

apes, W
iley O

nline L
ibrary on [04/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

experimental evidence indicates that overall our monitoring over-
head is negligible and lightweight across most configurations and
scenarios considered.

3.2.4 | Experiments

The experiments conducted in this study are summarized in
Table 3. For each experimental configuration, we collected eval-
uation metrics concerning execution time, resource utilization
performance (CPU, memory, disk, etc.), energy consumption via
PDU, and application-level metrics provided by the Spark stack
and collected via History Server. The measurements presented
throughout this study are average values of at least 10 replica-
tions, with their respective 95% confidence intervals. Also, before
each execution, the caches were properly cleared to avoid biased
results.

The experiments were designed with the following objectives:
[OBJ-1] to define a better set of resources for each load, based on
the measurements; [OBJ-2] to verify if the size of the VMs used
to build the processing cluster, given a fixed budged, impacts the
results; [OBJ-3] to propose models that explain execution times

TABLE 2 | Overhead added by the monitoring solution.

Percentile

VM with
3 cores

VM with
6 cores

Energy
(%)

Runtime
(%)

Energy
(%)

Runtime
(%)

50th 2.71 1.54 1.25 0.58
75th 7.76 6.68 5.67 5.82
90th 11.49 9.62 9.96 8.41
max 27.68 29.13 14.76 14.51

TABLE 3 | Experiment design space.

Parameter Parameter variation

Algorithm Terasort, K-means, PageRank, SVM, MatFact
Load level Standard (default input data), Light, Heavy
Servers 3, 4, 5, 6
VM config.* 3 cores per VM (3 × 6), 6 cores per VM (1 × 6)

Note: * in a VM with 𝑘 cores is instantiated a Spark executor with 𝑘 cores.

and energy consumption with a minimum set of factors necessary
to characterize consumption behavior; and [OBJ-4] to compre-
hend the factors at the application level that correlate well with
the behaviors identified using system-level performance metrics.

3.2.5 | Multi-Layered Analysis

To provide a comprehensive view of these experimental results,
we propose in this work a multi-layered methodology for charac-
terizing big data workloads with respect to energy consumption.
The idea is to start with high-level aggregated measurements and
gradually drill down into low-level measurements that are closer
to the application. For such we define three layers for workload
evaluation (Figure 2).

In the first layer concerning Resource Provisioning (concerning
[OBJ-1] and [OBJ-2]), we characterize the optimal resource pro-
visioning and energy saving potential of big data loads by consid-
ering only higher-level aggregated measures such as application
execution time and end-to-end energy consumption. This first
layer is independent of the computing framework or stack, since
it depends solely on the resource provisioning from VMs and the
underlying energy monitoring method via PDUs.

In the second layer concerning System-level Resource Utiliza-
tion (concerning [OBJ-3]), we employ linear regression mod-
els to describe the impact of performance metrics collected from
O.S. monitoring on energy consumption, and hence, we provide
insights into how diverse energy consumption patterns can be
and which general conclusions are possible within our evaluated
workload. This second layer can also be applied to other com-
puting environments as is, since it only depends on the energy
monitoring via PDUs and the internal built-in OS performance
metrics.

Finally, in the third layer concerning Application-level
Resource Utilization (concerning [OBJ-4]), we discuss the
impact of the inherent application characteristics on the energy
consumption. The third layer is framework-dependent, and
hence, to leverage the methodology to other computing stacks,
one would need to first define and collect application-level data.

4 | Layer 1: Resource Provisioning

The results presented in this section represent a general overview
of the executions. The graphs include 95% confidence intervals

FIGURE 2 | Multi-layered analysis overview.

6 of 21 Concurrency and Computation: Practice and Experience, 2026

 15320634, 2026, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70565 by C

apes, W
iley O

nline L
ibrary on [04/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

from at least 10 executions, for two values: Execution time (sec-
onds) on the left and energy consumption (watt-hours) on the
right. In all loads, it is expected that as more resources are
offered, the execution time will be reduced. However, as will
be shown, energy consumption does not always suffer a propor-
tional reduction. When adding a new server, it adds a power value
𝑃0 that is present even under no application load, and it is added
to the other factors that compose the consumption during execu-
tion time. All factors that contribute to the consumption depend
on the time taken to complete the application. For this reason,
the energy consumption of the scenarios behaves in various ways.
The results obtained from processing each scenario are presented
as two bar graphs, containing Execution Time and Energy con-
sumption, showing the performance of workloads under a stan-
dard, light, and heavy load, respectively. All graphs plot metrics
against “VM size” on the x-axis, in two categories: “2 × 3” (two
small VMs per worker) and “1 × 6” (one large VM per worker).
The number of servers used is presented as 3 in blue, 4 in orange,
5 in green, and 6 in red.

4.1 | Terasort (Figure 3)

For Terasort, the increase in the number of servers reduces execu-
tion time as would be expected, with better performance observed
with 2 VMs of 3 cores. For each server included, the power
(not included in the graphs) increases similarly for both VM
sizes. Since Terasort’s energy consumption is highly dependent
on disk reads combined with CPU usage (see shuffle dimensions
in Table 1), having more VMs contributed to the interposition
of processing and I/O, providing concurrent HDFS accesses and
accelerating executions. Regarding the variation in the number
of servers, we observed that despite the time acceleration obtained
with more servers, a reduction in total energy consumption is not
always achieved—which leads us to conclude that optimizing
consumption in big data applications is not trivial and often does
not proportionally follow the gains obtained in time.

Comparing with light and heavy loads, we can note that Tera-
sort’s large workload requires more time and energy, as expected.
Increasing the number of servers generally reduces execution
time, but for light loads, this reduction can be marginal and even
inefficient in terms of energy at certain points. The relationship
between execution time and energy consumption is not linear or
always proportional. In scenarios like the heavy load with 1 × 6
VMs in 4 servers, a shorter execution time does not mean pro-
portionally lower energy consumption. This highlights the com-
plexity of jointly optimizing performance and energy efficiency.
The choice of VM size between 2 × 3 or 1 × 6 and the number of
servers impacts performance and energy consumption differently
depending on the load. For Terasort, the 2 × 3 VM size showed to
be more consistently energy-efficient across all loads.

4.2 | K-Means (Figure 4)

Increasing the number of servers reduces execution time, but
only up to a certain point. Unlike Terasort, K-means performance
was higher with 1 × 6 VMs than with 2 × 3 VMs. However, perfor-
mance does not consistently improve with an increased number
of servers. For example, there is a minimum point in time and

consumption observed with 5 servers in 6-core VMs. This behav-
ior suggests uneven work distribution in these servers, an issue
that is only exacerbated with more servers and can only be veri-
fied via application-level metrics, as we will see in Section 6.

Next, we contrast these results against light and heavy loads.
For K-means with light loads, the 2 × 3 VM size generally shows
increasing energy consumption with more servers (from 42 Wh
at 3 servers to 56 Wh at 4 servers, then drop to 50 Wh at 5 servers
and a slight drop to 48 Wh at 6 servers), while the 1 × 6 VM size
is notably more energy-efficient, consistently lower (20 Wh for
3–5 servers, rising to 32 Wh at 6 servers), with its lowest con-
sumption observed at 3, 4, or 5 servers. For K-means with heavy
loads, the 2 × 3 VM size shows energy consumption increasing
from 170 Wh with 3 servers to a peak of 200 Wh with 5 servers,
before dropping back to 170 Wh with 6 servers. Conversely, the
1 × 6 VM size begins with high energy consumption (300 Wh at
3 servers), but significantly decreases to 125 Wh with 6 servers,
eventually becoming lower than 2 × 3 at 6 servers.

Overall, energy consumption is lowest for light loads, moderate
for standard loads, and highest for heavy loads. The 1 × 6 config-
uration is more energy-efficient for light loads, whereas for heavy
loads, 1 × 6 demonstrates a substantial energy reduction with an
increasing number of servers, indicating that more resources con-
tribute to greater efficiency over time. For K-means, the 1 × 6 VM
size generally offers better performance (lower execution time)
and often better energy efficiency compared to 2 × 3 across all
load types, especially as the number of servers increases for heavy
loads. This contrasts with Terasort, where 2 × 3 was often a good
performer for energy. The light and heavy loads corroborate that
anomalies in intra-application and in data partitioning can lead
to unpredictable energy consumption.

4.3 | PageRank (Figure 5)1

The 1 × 6 VM size consistently achieves lower execution times
than 2 × 3 for PageRank under standard load, with the fastest
execution observed at 5 servers for 1 × 6 (200s), while adding
a 6th server leads to an increase in time for both VM sizes.
For PageRank’s standard load, the 1 × 6 VM size shows signifi-
cantly lower energy consumption across all server counts com-
pared to 2 × 3, with its lowest consumption at 3 servers (21 Wh),
whereas 2 × 3 experiences an increase in energy as more servers
are added, peaking at 55 Wh with 6 servers. Thus, for PageR-
ank, reducing execution time by provisioning additional servers
does not directly implies in proportional reduction in energy
consumption.

When considering light load, the 2 × 3 VM size has the highest
execution time with 3 servers, decreasing with 4 servers, then it
rises with 5 servers and drops with 6 servers. The pattern is some-
what erratic, but still suggests fewer than 3 servers. In the case
of the 1 × 6 VM size, execution time is lower than for 2 × 3 VMs,
with the fastest suggested execution time with 3 servers. The con-
fidence interval in the group of 1 × 6 VM does not allow strong
affirmations for 4, 5, and 6 servers. For a heavy load is interesting
note that for 3 servers in 2 × 3 VMs size runs faster than equiva-
lent budget of servers with 1 × 6 VMs. Both configurations have
their execution times shortened from 4 servers to 5 servers, and

Concurrency and Computation: Practice and Experience, 2026 7 of 21

 15320634, 2026, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70565 by C

apes, W
iley O

nline L
ibrary on [04/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

FIGURE 3 | Execution time and energy consumption of Terasort in standard, light, and heavy load.

8 of 21 Concurrency and Computation: Practice and Experience, 2026

 15320634, 2026, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70565 by C

apes, W
iley O

nline L
ibrary on [04/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

FIGURE 4 | Execution time and energy consumption of K-means in standard, light, and heavy load.

Concurrency and Computation: Practice and Experience, 2026 9 of 21

 15320634, 2026, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70565 by C

apes, W
iley O

nline L
ibrary on [04/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

FIGURE 5 | Execution time and energy consumption of PageRank in standard, light, and heavy load (scenarios for 6 servers under heavy load did
not execute).

10 of 21 Concurrency and Computation: Practice and Experience, 2026

 15320634, 2026, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70565 by C

apes, W
iley O

nline L
ibrary on [04/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

it seems that 4 servers is the worst case for both VM sizes (hard-
ware problems prevented us from executing the scenarios with 6
servers in this case). The overall trend for execution times is low-
est for light loads, moderate for standard loads, and highest for
heavy loads. For light loads, a 1 × 6 VMs configuration is faster.
Considering the energy consumption under light load, the erratic
pattern in the execution time impacts the results for the 2 × 3 VMs
configuration. For the 1 × 6 configuration, the impact on total
power of including servers is more significant than the accelera-
tion in execution time. In other way for a heavy load of PageRank,
2 × 3 VMs suggests a minimum similar consumption for even 3,
4, or 5 servers. One interesting observation is that for a heavy load
in 2 × 3 VMs and 1 × 6 VMs, unlike the light load, the reduction
in execution times with 5 servers becomes significant enough to
decrease energy consumption when adding more servers. Again
is still clear that are complex time-energy relationship, since the
graphs consistently show that reducing execution time doesn’t
always directly lead to proportional energy savings. The optimal
configuration for speed might not be the most energy-efficient,
and vice-versa.

4.4 | SVM (Figure 6)

For the standard SVM workload, the 1 × 6 VM size deliv-
ered superior performance with lower execution times and
reduced energy consumption compared to 2 × 3 across all server
configurations. While increasing the number of servers gen-
erally decreased execution time for both VM sizes, reach-
ing optimal speeds at 5 or 6 servers for 1 × 6, the most
energy-efficient point was observed at 4 servers in the 1 × 6 con-
figuration. Conversely, the 2 × 3 VM size typically experienced
increased energy consumption with more servers, underscoring a
trade-off where greater resources do not always equate to energy
savings, particularly for certain VM configurations and load
types.

The SVM performance under light and heavy loads reveals dis-
tinct patterns for execution time and energy consumption. For
light loads, the 1 × 6 VM size generally yields faster execution,
achieving its quickest run at 5 servers, while the 2 × 3 configu-
ration is slower and its execution time can increase with more
servers. In terms of energy for light loads, 1 × 6 is markedly more
efficient, reaching its lowest consumption with 3 to 5 servers,
whereas 2 × 3 typically shows an increase in energy as server
count rises. Under heavy loads, the 1 × 6 VM size initially experi-
ences very high execution times and energy consumption with
fewer servers, but significantly improves both metrics as more
servers are added, becoming fastest and most energy-efficient
at 5 servers. Conversely, the 2 × 3 configuration under heavy
load starts faster with fewer servers but shows less significant
improvements in time and higher, more stable energy consump-
tion compared to the optimized 1 × 6 setup.

Comparing these results with the standard SVM load, all load
types, the 1 × 6 VM size consistently outperforms 2 × 3 in terms
of both lower execution times and generally superior energy effi-
ciency. While light loads often exhibit diminishing returns or
even performance degradation when adding too many servers
beyond an optimal point, heavy loads consistently benefit from
increased server allocation, where significant reductions in

execution time directly translate into lower total energy con-
sumption. This highlights that for demanding workloads, allo-
cating more resources to the 1 × 6 VMs can lead to substantial
efficiency gains that outweigh the initial overhead.

4.5 | Matrix Factorization (Figure 7)

In Matrix Factorization for standard load (Figure 7), in the 2 × 3
VM size, the execution time generally decreases as the number of
servers increases from 3 to 5, but then rises notably with 6 servers.
Energy consumption for 2 × 3 follows a less consistent pattern,
starting at 3 servers, peaking at 6 servers, and with a slight dip at 5
servers. Conversely, the 1 × 6 VM size generally shows lower exe-
cution times, decreasing from 3 servers to 5 servers, then increas-
ing slightly at 6 servers. Its energy consumption pattern for 1 × 6
is also lower overall, starting at 3 servers, increasing to 4 servers,
then slightly decreasing to 5 servers before rising to 6 servers.
Notably, the 1 × 6 VM size generally achieves faster execution and
lower energy consumption compared to 2 × 3 for this load.

The Matrix Factorization (MatFact) performance under light and
heavy loads reveals varied behaviors across different VM sizes
and server counts. For light loads, the 2 × 3 VM size exhibits vari-
able execution times, with a notable peak at 3 servers and a low at
5 servers, while its energy consumption is highest with 6 servers
and lowest with 5 servers. The 1 × 6 VM configuration for light
loads shows lower execution times, particularly at 4 and 5 servers,
though it experiences an energy increase with 6 servers. Under
heavy load, the 2 × 3 VM size demonstrates execution times that
decrease with more servers, from 3 to 5 servers, and its energy
consumption also decreases, reaching a lower consumption with
4 servers. Meanwhile, the 1 × 6 VM size under heavy load has
significantly longer execution times with fewer servers (e.g., 3
servers), and its energy consumption generally increases with
more servers, reaching a peak with 6 servers.

Comparing these with the standard load, several key patterns
emerge. Across all load types, the 1 × 6 VM size achieves lower
execution times than 2 × 3 for standard load, but under heavy
load, 2 × 3 showed be faster with fewer servers. In terms of
energy, the 1 × 6 VMs size is often more energy-efficient for
light and standard loads, showing lower consumption at optimal
server counts. However, for the heavy load, the 1 × 6 VMs size,
despite its reduced execution time with more servers, paradox-
ically shows a significant increase in total energy consumed as
more resources are added. This contrasts sharply with the 2 × 3
VM size under heavy load, which, while not always the fastest,
often exhibits lower and sometimes decreasing energy consump-
tion with additional servers, indicating that the most performant
configuration is not always the most energy-efficient across dif-
ferent workloads and VM sizes.

4.6 | Discussion and Takeaways From Layer 1

Considering the results shown, some of those algorithms get
benefits from increased servers up to a point, after which over-
head becomes noticeable. Each algorithm demonstrated unique
sensitivities to VM size and server count. For instance, PageR-
ank consistently favored 1 × 6 VMs for both time and energy,

Concurrency and Computation: Practice and Experience, 2026 11 of 21

 15320634, 2026, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70565 by C

apes, W
iley O

nline L
ibrary on [04/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

FIGURE 6 | Execution time and energy consumption of SVM in standard, light, and heavy load.

12 of 21 Concurrency and Computation: Practice and Experience, 2026

 15320634, 2026, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70565 by C

apes, W
iley O

nline L
ibrary on [04/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

FIGURE 7 | Execution time and energy consumption of Matrix Factorization in standard, light, and heavy load.

Concurrency and Computation: Practice and Experience, 2026 13 of 21

 15320634, 2026, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70565 by C

apes, W
iley O

nline L
ibrary on [04/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

while SVM showed dramatic energy efficiency gains in 1 × 6
VMs for heavy loads as servers increased. K-means also often
preferred 1 × 6 VMs but could exhibit variable, erratic energy
spikes. This indicates that a one-size-fits-all approach to resource
allocation and energy optimization is unlikely to be effective.
For light workloads, adding servers beyond an optimal point
(often 4 or 5) can prove inefficient, as execution times may
stagnate or even increase, which makes energy consumption
rise due to overhead. Conversely, heavy workloads consistently
benefit from an increased number of servers, particularly with
the 1 × 6 VMs, leading to substantial reductions in execution
time. In some instances, such as SVM with 1 × 6 VMs on heavy
load, the time reduction also results in lower total energy con-
sumption, demonstrating that a well-resourced setup is crucial
for efficient handling of tasks. The behavior observed with
standard loads typically falls between that of light and heavy
loads, where certain algorithms show benefits from additional
servers up to a specific count before overhead effects become
noticeable.

The findings in this Resource Provisioning Layer demonstrate that
there are setups capable of being more efficient in both time
and consumption, but results clearly indicated that the speedup
obtained with more servers does not always translate into equiv-
alent energy savings. Also, VM size can influence consumption
because it directly impacts how the parallel processing frame-
work, in this case, Spark, sees the available parallelism. Another
important takeaway is that the energy saving potential, that is,
the difference between the lowest and the highest energy con-
sumption for a given workload, varies substantially among appli-
cations and provisioning configurations. Such an observation
indicates that energy saving strategies in datacenters could ben-
efit from tracking the behavior of the workloads and prioritizing
the most prominent in terms of energy efficiency, given that tun-
ing applications for energy may be non-trivial, as we see in these
results.

The variety of trends observed across the studied workloads led
to questioning which factors could explain such behaviors. With
each increase in server count, more disks are engaged in HDFS,
enhancing parallel data processing that can accelerate read/write
operations. Concurrently, the augmented number of network
interfaces provides a larger capacity for network traffic, poten-
tially speeding up inter-node communication and overall task
completion. However, this expansion also carries the inherent
challenge of increased management complexity and overhead,
which might, in some instances, hinder performance gains or
introduce unexpected delays in workload execution. Similarly,
the presented experimental results do not provide sufficient
data to evaluate average CPU utilization or which workloads
benefit from or effectively occupy additional CPU resources.
Consequently, it remains unclear at this point, for instance,
which specific workload benefits most from the resources made
available by adding a new server, or if the impact of resource
allocation differs across the three load levels: Standard, light, and
heavy. To a better understanding of what factors impact more or
less in performance and consumption, in the following section,
we go deeper into our analysis and study energy consumption
with its relation to resource utilization metrics (CPU, memory,
disk, and network) captured by monitoring.

5 | Layer 2: System-Level Resource Utilization

To determine how the collected metrics by monitoring impact the
obtained results, multifactor linear regressions were performed
for each algorithm in all load levels. At this point, it’s important
to differentiate between the two types of factors present in the
regressions. There are factors (1) composed only of system met-
rics, collected through monitoring, and inherent to each execution,
and there are factors (2) that the user can control. For the col-
lected metrics, the following factors were considered: The average
percentage of processor usage during executions (CPU-AVG), the
sum of data written (D-WRITE) and read from disk (D-READ) in
GB, and the sum of data transmitted over the network during exe-
cution (NET) in GB. The user-configurable factors considered in
this study are the allocation of offered resources in different VM
sizes (2 VMs with 3 cores each or 1 VM with 6 cores) and the num-
ber of servers (3 to 6). Here, we use linear regression as a method
for estimating the impact of these factors, and hence, the purpose
is not for prediction tasks.

5.1 | The Impact of Collected Performance
Metrics

To characterize the impact of the collected metrics, factorial
regressions that included just observed system factors, with-
out differentiating the user-modifiable factors, are presented in
Tables 4, 5, and 6. All models across all load levels exhibit
very high R2 values (ranging from 0.689 to 0.988), indicat-
ing that the selected metrics (CPU-AVG, D-READ, D-WRITE,
NET) explain, not trivially, a large proportion of the variance
in energy consumption. This suggests these factors are strong
in explaining energy consumption in these big data workloads.
The significance of factors in the majority of cases, p-values are
lower than 0.001, indicating that the coefficients for CPU-AVG,
D-READ, D-WRITE, and NET are statistically significant to
compose energy consumption for most applications and loads.
Notable exceptions where a p-value is higher, meaning less sig-
nificance, can be interesting for deeper analysis, such as K-means
D-READ at standard load, Matfact D-READ, and D-WRITE at
standard load.

Focusing on specific metric and load levels, the 𝛽1 (CPU-AVG)
coefficient is negative across all applications and all load lev-
els. This is a counterintuitive and interesting finding. Conven-
tionally, higher CPU usage would be expected to lead to higher
energy consumption. A negative coefficient suggests that, within
these models, three possible things, or a combination of those:
(i) increased CPU utilization is correlated with decreased total
energy consumption. This could imply efficiency gains, if higher
CPU utilization mean that tasks complete faster, thus reducing
the total time for which power is drawn, leading to lower overall
energy; (ii) it could be under-utilization overhead, when it might
indicate that even when the CPU is less utilized, the base power
consumption of the server (idle or low-power state) is still signif-
icant, and effectively utilizing the CPU leads to more work done
for a given amount of active power; and (iii) workload-specific
patterns, since negative correlation might also be due to the
nature of the workloads where some CPU-intensive phases
lead to quicker completion, or perhaps other components (disk,

14 of 21 Concurrency and Computation: Practice and Experience, 2026

 15320634, 2026, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70565 by C

apes, W
iley O

nline L
ibrary on [04/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

TABLE 4 | Model and results of linear regressions per application at standard load.

Energy = 𝜷0 + 𝜷1 ⋅ CPU-AVG + 𝜷2 ⋅ D-READ + 𝜷3 ⋅ D-WRITE + 𝜷4 ⋅ NET

𝜷0 Intercept 𝜷1(%) 𝜷2(GB) 𝜷3(GB) 𝜷4(TB)

Terasort Coef. 74.90 ± 1.81 −0.39 ± 0.04 6.77 ± 1.10 −238.10 ± 48.48 0.926 ± 0.191
𝑅2 = 0.818 𝑝 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
PageRank Coef. 52.46 ± 3.03 −0.36 ± 0.03 −46.46 ± 5.79 318.53 ± 48.58 −0.289 ± 0.092
𝑅2 = 0.835 𝑝 < 0.001 < 0.001 < 0.001 < 0.001 0.002
K-means Coef. 60.62 ± 5.98 −0.65 ± 0.07 −2.39 ± 4.44 335.91 ± 48.05 −0.00120 ± 0.00011
𝑅2 = 0.689 𝑝 < 0.001 < 0.001 0.591 < 0.001 < 0.001
SVM Coef. 47.50 ± 0.87 −0.27 ± 0.01 −71.71 ± 5.12 1316.81 ± 69.58 −3.586 ± 0.153
𝑅2 = 0.948 𝑝 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Matfact Coef. 101.70 ± 5.05 −1.08 ± 0.07 12.29 ± 9.36 −0.13 ± 0.09 0.386 ± 0.178
𝑅2 = 0.804 𝑝 < 0.001 < 0.001 0.191 0.126 0.032

TABLE 5 | Model and results of linear regressions for each light load.

Energy = 𝜷0 + 𝜷1 ⋅ CPU-AVG + 𝜷2 ⋅ D-READ + 𝜷3 ⋅ D-WRITE + 𝜷4 ⋅ NET

𝜷0 Intercept 𝜷1(%) 𝜷2(GB) 𝜷3(GB) 𝜷4(TB)

Terasort Coef. 40.65 ± 1.78 −0.89 ± 0.06 17.09 ± 1.54 −10.58 ± 1.02 −0.0369 ± 0.0035
𝑅2 = 0.939 𝑝 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
PageRank Coef. 27.88 ± 4.31 −0.78 ± 0.14 211.13 ± 27.57 −143.74 ± 18.99 −0.432 ± 0.0562
𝑅2 = 0.940 𝑝 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
K-means Coef. 39.25 ± 2.30 −1.30 ± 0.08 54.94 ± 4.12 −32.82 ± 2.53 −0.145 ± 0.0113
𝑅2 = 0.988 𝑝 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
SVM Coef. 44.83 ± 2.71 −1.28 ± 0.06 −106.79 ± 15.10 68.10 ± 9.31 0.284 ± 0.0411
𝑅2 = 0.979 𝑝 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Matfact Coef. 66.73 ± 4.39 −2.73 ± 0.18 −74.66 ± 33.12 55.03 ± 23.74 0.140 ± 0.0621
𝑅2 = 0.914 𝑝 < 0.001 < 0.001 0.027 0.023 0.027

TABLE 6 | Model and results of linear regressions for each heavy load.

Energy = 𝜷0 + 𝜷1 ⋅ CPU-AVG + 𝜷2 ⋅ D-READ + 𝜷3 ⋅ D-WRITE + 𝜷4 ⋅ NET

𝜷0 Intercept 𝜷1(%) 𝜷2(GB) 𝜷3(GB) 𝜷4(TB)

Terasort Coef. 76.73 ± 19.52 −0.45 ± 0.42 −0.46 ± 0.52 9.00 ± 1.63 −0.0222 ± 0.0030
𝑅2 = 0.945 𝑝 < 0.001 0.289 0.370 < 0.001 < 0.001
PageRank Coef. 60.57 ± 16.71 −1.19 ± 0.45 −11.6 ± 3.84 19.39 ± 11.63 0.0011 ± 0.0012
𝑅2 = 0.925 𝑝 < 0.001 < 0.001 0.002 0.001 0.690
K-means Coef. 108.26 ± 8.75 −2.93 ± 0.36 3.07 ± 0.38 7.64 ± 0.58 −0.0397 ± 0.0042
𝑅2 = 0.974 𝑝 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
SVM Coef. 89.80 ± 7.71 −1.47 ± 0.22 3.39 ± 1.48 7.35 ± 1.95 −0.0434 ± 0.016
𝑅2 = 0.908 𝑝 < 0.001 < 0.001 0.025 < 0.001 0.008
Matfact Coef. 75.99 ± 10.59 −2.83 ± 0.36 −25.07 ± 1.60 103.92 ± 6.64 −0.145 ± 0.0095
𝑅2 = 0.980 𝑝 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Concurrency and Computation: Practice and Experience, 2026 15 of 21

 15320634, 2026, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70565 by C

apes, W
iley O

nline L
ibrary on [04/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

network) become bottlenecks when CPU is less active, extending
overall time and thus energy.

The magnitude of the negative coefficient often increases from
light to heavy loads for some applications (e.g., K-means, SVM,
Matfact), suggesting that the “efficiency gain” or “overhead
reduction” from higher CPU utilization is even more pronounced
for demanding tasks.

For the coefficient 𝛽2 (D-READ), the sign of 𝛽2 changes signifi-
cantly across applications and load levels. For Terasort, 𝛽2 has a
positive coefficient at standard and light loads, but a negative one
at heavy loads. PageRank has a consistently negative 𝛽2. K-means
has a negative 𝛽2 at standard, but positive at light and heavy loads.
SVM has a negative 𝛽2 at standard and light, but positive at heavy.
Matfact is highly variable, with a positive at standard, a very large
negative coefficient at light, and a negative at heavy. This variabil-
ity suggests that the energy cost of disk reads is highly dependent
on the specific application’s I/O patterns and the load level. A
negative coefficient might imply that workloads that are bottle-
necked by disk reads might spend more time overall, leading to
higher total energy, while efficient, high-volume reads might be
optimized.

The coefficient 𝛽3 (D-WRITE) is generally positive for most appli-
cations and loads. D-WRITE has a positive coefficient, indicating
that writing more data to disk consumes more energy. This is
an intuitive result. Notable exceptions in magnitude are PageR-
ank, which has a positive and relatively large 𝛽3 in standard load,
and Matfact shows a near-zero or slightly negative coefficient at
standard load, but a very large positive coefficient at heavy load,
suggesting a drastically different energy profile for disk writes
under extreme conditions. At this point is important to empha-
size that under heavy load, MatFact lost and recovered executors
to complete required tasks.

For coefficients 𝛽4 (NET) for network traffic are generally much
smaller in magnitude compared to D-READ or D-WRITE, and
their signs vary. Terasort has positive 𝛽4 at standard and light, but
negative at heavy. PageRank is negative at standard and light, but
near zero at heavy. K-means and SVM are consistently negative.

Matfact has mixed small values. This mixed behavior suggests
that network traffic’s direct energy impact might be less domi-
nant than CPU or disk I/O, or that high network traffic is often
correlated with efficient data movement that reduces overall exe-
cution time. A negative coefficient could, similar to CPU, imply
that efficient network usage leads to faster completion, reducing
total energy.

5.2 | Discussion and Takeaways From Layer 2
— Performance Metrics

In this System-level Resource Utilization Layer, concerning perfor-
mance metrics, linear models showed that a consistently negative
coefficient for CPU-AVG is a strong indicator that optimizing for
CPU utilization, thereby reducing overall execution time, is a key
strategy for energy saving in these types of workloads. Even if
the instantaneous power draw is higher, the shorter duration of
the task leads to lower total energy. Furthermore, the highly vari-
able coefficients for D-READ and D-WRITE underscore that the
energy cost of disk I/O is not universal; it’s intricately linked to the
application’s specific data access patterns and how those patterns
interact with the underlying storage system under different loads.
For the load level on factor impact is possible observe that the
change in magnitude and even sign of some coefficients across
light, standard, and heavy loads indicates that the relative impor-
tance and energy implications of different resource metrics are
not static, but depend on the intensity of the workload. This is
crucial for dynamic resource management. Therefore, aside from
CPU-AVG, we observe no overall pattern for factors’ coefficients
across applications and load levels, neither in terms of magnitude
nor sign.

5.3 | The Incremental Impact of User-Defined
Configurations and Collected Performance
Metrics

Next, we evaluated the incremental impact of factors on the
model through a hierarchical linear regression. The results are
presented in the heatmap in Figure 8, which illustrates the

FIGURE 8 | Hierarchical linear regression: Understanding the incremental explainability of factors.

16 of 21 Concurrency and Computation: Practice and Experience, 2026

 15320634, 2026, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70565 by C

apes, W
iley O

nline L
ibrary on [04/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Adjusted R2 values for hierarchical linear regressions model-
ing energy consumption across different applications (K-means,
Matfact, PageRank, SVM, Terasort) and load scenarios (Light,
Standard, Heavy). The analysis incrementally adds factors to the
model, beginning with user-available parameters and then incor-
porating system-level metrics. The starting point for user inter-
vention involves VM configuration (VM-CONF) and the number
of servers (SERVERS).

Under standard loads, VM-CONF alone provides slightly better,
yet still insufficient, explanatory power (0.23 to 0.48). However,
the combination of VM-CONF + SERVERS yields a significantly
stronger baseline (R2 from 0.55 to 0.76), demonstrating that these
user-controlled parameters become much more effective factors
in energy consumption. Further incorporation of CPU, DISK
READ, DISK WRITE, and NET consistently pushes R2 values
into the over 0.90 (0.92–0.98), completing their comprehensive
role. For light loads, VM-CONF alone has a very limited impact
(R2 ranging from −0.08 to 0.55). Adding the number of servers
improves R2 notably for SVM (0.71), K-means (0.58), and Mat-
fact (0.55), but still falls short for PageRank (0.37) and SVM
(0.21). Subsequent inclusion of CPU, DISK READ, and DISK
WRITE factors dramatically increases R2 across all applications,
frequently exceeding 0.95. The final addition of NET consistently
brings R2 to very high levels (0.95–0.99), indicating these sys-
tem metrics are crucial for explaining energy at light loads. For
heavy loads, VM-CONF alone is almost entirely ineffective as a
factor (R2 often near zero or negative), with Terasort being a sig-
nificant exception (0.89). Even VM-CONF + SERVERS provides
very low R2 values for most applications (0.15 to 0.37), highlight-
ing that for demanding tasks, simply configuring VMs and server
count offers little insight into energy consumption without inter-
nal system metrics. It’s the addition of CPU and D-READ that
causes a dramatic surge in R2 for all algorithms (all reaching
around 0.92 to 0.97), demonstrating its critical role in explaining
energy under heavy pressure. With the full set of factors, includ-
ing DISK READ, DISK WRITE, and NET, R2 values consistently
reach near-perfect levels (0.98–0.99).

5.4 | Discussion and Takeaways From Layer
2—Incremental Impact of Factors

In the System-level Resource Utilization Layer, concerning the
incremental impact of factors, we observe a clear hierarchy of
explanatory power: User-controlled parameters (VM-CONF,
SERVERS) offer a foundational level of explanation, which
becomes more robust at standard loads than at light or heavy
loads. Such an observation leads us to conclude that user-defined
factors (number of servers and VM configuration) are able to
explain energy behavior up to a certain point. To have a truly
reliable understanding of energy efficiency, one must account for
monitored performance metrics that only can only be extracted
at runtime. This reinforces the idea that energy consumption is
heavily impacted by load level—which can be dependent on the
application (see Section 6). For a comprehensive understanding
and accurate modeling of energy consumption, particularly at
the extremes of workload intensity, detailed system-level met-
rics (CPU, disk I/O, network) are indispensable, consistently
leading to extremely high R2 values across all applications and
scenarios. Notably, CPU utilization emerges as a particularly

critical factor for explaining energy behavior, especially under
heavy loads. Notice that our methodology at this layer does not
include application-level metrics, and the results shown here
enforce the idea that some energy consumption behaviors can
indeed be explained by system-level observations, and moreover,
that system-level metrics can supersede some application-level
metrics that are more intricate to obtain. In our experiments,
this is the case of metrics that track the Garbage Collection (GC)
overhead in JVM-based systems such as Spark. In preliminary
analysis considering GC as a factor to explain energy consump-
tion (not shown), we concluded that such a factor did not provide
significant improvement to the regression’s 𝑅2 in any scenario
and hence, did not provide any new information that had not
been captured by system-level metrics.

6 | Layer 3: Application-Level Resource
Utilization

Even if the most important factors for a load’s energy consump-
tion are understood, it is also important to identify the specific
execution characteristics that led to the observed behavior. More-
over, two application-level aspects may be too context-specific
and exhibit an inherent energy consumption behavior. The first
aspect concerns characteristics of the execution environment and
model, in our case, algorithms evaluated are subject to the paral-
lelism approach of Spark, which may or may not be optimized.
The second aspect concerns characteristics and data-dependency
patterns specific to each algorithm. We argue that the impact of
these aspects can be observed via an application-level resource
utilization metric designed to estimate how effectively an execu-
tion timeline is filled with useful work—in our context, Spark tasks.
Hence, we evaluated the impact of Spark’s task allocation on
energy consumption. On a Spark server with the capacity to exe-
cute 𝑇𝑚𝑎𝑥 Spark tasks in parallel (i.e., a server with 𝑇𝑚𝑎𝑥 available
cores per Spark executor), the maximum possible core utilization
for an execution that lasted𝐷 seconds would be given by𝑇𝑚𝑎𝑥 ∗ 𝐷

(all cores executed tasks during all the time). With this, we define
the Spark Core Utilization metric SCU of a server as the fraction
of that maximum (given by 𝑇𝑚𝑎𝑥 ∗ 𝐷) actually filled with Spark
tasks (0 ≤ 𝑆𝐶𝑈 ≤ 1). Table 7 shows the SCU for the VM config-
urations that exhibited the most energy-efficient results for each
load level.

Concerning the standard load, when the Spark Core Utilization is
contrasted with the energy consumption (Layer 1), it is clear that
higher energy consumption is generally associated with a subop-
timal utilization of available resources by tasks (lower SCU). In
this case, it is possible to identify, beyond a certain point, loads
that do not benefit from more servers, which, when active, unnec-
essarily increase energy consumption. Furthermore, the imbal-
ance in resource utilization by servers plays an important role.
Taking the Matrix Factorization algorithm with standard load
on 6 servers as an example, one can see that some servers are
very well utilized (Max 𝑆𝐶𝑈 = 0.81), while most other servers
remain practically idle (Min.𝑆𝐶𝑈 = 0.13 and Avg.𝑆𝐶𝑈 = 0.28).
PageRank and K-means show progressive imbalance in utiliza-
tion, similar to Matrix Factorization. At the other extreme, we can
observe that Terasort and SVM had the lowest degrees of imbal-
ance in SCU. Indeed, loads with more regular and dense process-
ing (Terasort and SVM) allowed for better utilization compared to

Concurrency and Computation: Practice and Experience, 2026 17 of 21

 15320634, 2026, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70565 by C

apes, W
iley O

nline L
ibrary on [04/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

TABLE 7 | SCU (Spark Core Utilization): Core utilization as the number of servers increases, for the best VM configuration identified for each load
(scenarios for PageRank on 6 servers under heavy load did not execute).

more sparse and irregular processing, typical of loads that process
graphs and spatial data, such as PageRank and K-means.

Concerning the resource utilization under light loads, SCU values
are consistently lower than in the standard or heavy scenarios.
This is particularly pronounced for Matrix Factorization, which
shows critical underutilization on six servers (Min. SCU = 0.06,
avg. SCU = 0.16), and for PageRank, where SCU remains low
even as the number of servers increases (e.g., avg. SCU = 0.37 on
6 servers). These results indicate that light loads tend to aggra-
vate the inefficiencies of task distribution, especially in irregular
or graph-oriented applications like PageRank and K-means. Even
Terasort and SVM, which are more regular algorithms, exhibit
moderate declines in SCU under light loads as the server count
increases. Such a trend can be observed in Figure 9.

Concerning the behavior under heavy loads reveals consistently
higher and more balanced resource utilization. Terasort and SVM
stand out with SCU values remaining high across all server
counts (e.g., Terasort avg. SCU = 0.91 with 3 servers, and still
0.47 with 6 servers; SVM avg. SCU = 0.92 and 0.67, with 3 and 6
servers, respectively). K-means also benefits from heavier work-
loads, achieving significantly better utilization than under light
loads (e.g., avg. SCU = 0.78 with 3 servers, compared to 0.44 in
Table 6). PageRank likewise shows improved balance, consider-
ing the data points available.

These comparisons reinforce key observations and are shown in
Figure 9: Light loads tend to amplify imbalance, particularly in
irregular workloads, making additional servers less effective and
often wasteful. In contrast, heavy loads enable better paralleliza-
tion, leading to higher SCU values across the board, especially

in workloads with dense and regular processing patterns. How-
ever, the degradation in SCU as the number of servers increases
is highly workload-dependent: While Terasort and SVM main-
tain robust utilization even at larger scales, Matrix Factorization,
K-means, and PageRank exhibit increasing imbalance and dimin-
ishing returns, particularly when the workload is insufficient to
saturate the available computational resources.

6.1 | Discussion and Takeaways From Layer 3

In the Application-level Resource Utilization layer, new perspec-
tives on energy consumption for big data workloads are intro-
duced via the SCU metric. First, our methodology confirms that,
overall, it is challenging to prevent resource idleness in dis-
tributed execution engines as the number of servers increases.
This becomes more evident when we observe lower and more
skewed SCU values as the number of servers increases. This trend
can be visualized in our scenario in Figure 9. Second, we iden-
tify inherent application behaviors in which the suboptimal uti-
lization comes from algorithm-specific data dependencies, and
in this case, the amount of work or the number of servers does
not properly mitigate such an imbalance. This application-level
analysis suggests that, for some cases, algorithm redesign or exe-
cution environment change may be the only effective alternative
for saving energy.

7 | Conclusion and Future Work

This work proposed and applied a multi-layered methodol-
ogy to analyze the energy consumption behavior of big data

18 of 21 Concurrency and Computation: Practice and Experience, 2026

 15320634, 2026, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70565 by C

apes, W
iley O

nline L
ibrary on [04/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

FIGURE 9 | Trends in application-level resource utilization: Comparing Spark Core Utilization (SCU) versus Energy Consumption for the config-
urations in Table 7.

workloads executed on Apache Spark in virtualized cloud envi-
ronments. By decomposing the analysis into three layers—
Resource Provisioning, System-Level Resource Utilization, and
Application-Level Resource Utilization—we offered a structured
methodology that provides a deeper understanding of the under-
lying factors influencing energy consumption.

At the first layer, resource provisioning, we observed that while
increasing the number of servers often reduces execution time,
it does not necessarily lead to proportional energy savings. In
some cases, especially with light workloads, additional resources
introduced unnecessary overhead, resulting in higher energy
usage. The choice of VM configuration (2 × 3 vs. 1 × 6) also
demonstrated importance: While 2 × 3 (more small VMs) per-
formed better for workloads like Terasort, 1 × 6 (fewer larger
VMs) configurations were generally more energy-efficient for
SVM, K-means, and PageRank, especially under heavy loads.
These observations reinforce the notion that there is no uni-
versally optimal configuration, and workload-specific resource
provisioning is challenging, but can be achieved.

The second layer of analysis, based on monitored system-level
performance metrics (CPU, disk I/O, and network), revealed
increased ability to explain energy behavior. The consistently
negative correlation between CPU utilization and total energy
consumption suggests that higher CPU use can result in shorter
execution durations and thus lower energy use. Disk and net-
work metrics exhibited application-specific behaviors, indicating
that a generalized interpretation is insufficient, and detailed
analysis is necessary. Moreover, the hierarchical regressions
performed show that while user-defined parameters (like server
count and VM size) offer some explanatory capability, it is
the inclusion of system-level runtime metrics that provides
a more accurate understanding of energy consumption (i.e.,
the user may not be able to select the configuration with better
performance-energy consumption just by setting server/VM level
parameters).

At the application layer, the proposed SCU metric (Spark Core
Utilization) proved valuable in assessing how effectively each

workload utilized available processing capacity. We found that
workloads with sparse or irregular execution patterns (such
as PageRank and Matrix Factorization) often suffered from
imbalanced task distribution, leading to under-utilization of
resources and increased energy usage. In contrast, more regu-
lar workloads (like Terasort and SVM) tended to achieve higher
and more balanced utilization across servers. These insights
reveal how execution dynamics at the task scheduling level con-
tribute directly to energy efficiency, an important consideration
for future scheduling and orchestration strategies.

The objective of the present work was to provide explanatory
insights and practical guidance for system designers and cloud
architects seeking to balance performance and energy efficiency.
Overall, this study highlights that optimizing energy consump-
tion in big data environments requires a multi-dimensional
understanding that goes beyond raw infrastructure metrics. The
multi-layered methodology proposed here is one of the main con-
tributions of this work, enabling a structured and interpretable
approach to analyze how different factors across provisioning,
system, and application layers impact energy consumption
behavior.

For future work, first, we plan to consider new workloads (algo-
rithms) in the same environment using the same methodology
to strengthen its usability. Second, we find it important to extend
the developed methodology by applying it to deep learning work-
loads that heavily utilize GPUs, such as LLMs. Last, a crucial step
involves developing a lightweight and modular system designed
to ensure the transparent integration of PDU power monitoring
data with the existing performance monitoring stack, such as the
Spark’s History Server.

Acknowledgments

This work was partially funded by Fapemig, CAPES, CNPq, and the
projects MCT/CNPq-InWeb (573871/2008-6), FAPEMIG-PRONEX-
MASWeb (APQ-01400-14), H2020-EUBR-2015 EUBra-BIGSEA,
H2020-EUBR-2017 Atmosphere, and FAPEMIG Universal APQ-00202-
24. The authors confirm that Artificial Intelligence (AI) was used

Concurrency and Computation: Practice and Experience, 2026 19 of 21

 15320634, 2026, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70565 by C

apes, W
iley O

nline L
ibrary on [04/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

exclusively as an accessory and tool to enhance the presentation and
efficiency of this work. Specifically, AI-powered writing assistance tools,
including GPT, Gemini, Copilot, and Perplexity, were used solely to
refine the clarity, flow, and grammatical correctness of the original text in
English, acting as a professional copyeditor to ensure a high standard of
written communication. Furthermore, those AI tools were employed to
correct and optimize the scripts and code used for the composition and
rendering of graphs and visual elements within the article, significantly
accelerating the preparation of visual data. No generative AI was used
for the conception, research, data analysis, interpretation of results,
or drawing of conclusions, which remain the exclusive and original
intellectual contribution of the human authors.

Funding

This work was supported by the Fundação de Amparo à Pesquisa do
Estado de Minas Gerais (Grant Nos. APQ-01400-14 and APQ-00202-24),
Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant
No. 573871/2008-6), Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior, EUBra-BIGSEA, and H2020-EUBR-2017 Atmosphere.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The data that support the findings of this study are openly available in
pdu-spark-energy at https://github.com/dccspeed/pdu-spark-energy.

Endnotes
1When working on the PageRank algorithm, we ran into hardware prob-
lems that prevented us from getting execution results for the heavy load
scenarios using 6 servers. For that reason, the analysis in this section
does not include data points of time and energy for PageRank under
heavy load with 6 servers.

References

1. M. Armbrust, A. Fox, R. Griffith, et al., “A View of Cloud Computing,”
Communications of the ACM 53, no. 4 (2010): 50–58, https://doi.org/10.
1145/1721654.1721672.

2. M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. Netto, and R. Buyya,
“Big Data Computing and Clouds: Trends and Future Directions,” Jour-
nal of Parallel and Distributed Computing 79 (2015): 3–15, https://doi.org/
10.1016/j.jpdc.2014.08.003. special Issue on Scalable Systems for Big Data
Management and Analytics.

3. J. Whitney and P. Delforge, “Scaling up Energy Efficiency Across the
Data Center Industry: Evaluating Key Drivers and Barriers,” (2014),
https://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.
pdf.

4. IEA, “Data Centres and Data Transmission Networks,” (2022), https://
www.iea.org/reports/data-centres-and-data-transmission-networks.

5. M. Pesce, “Cloud Computing’s Coming Energy Crisis-the Cloud’s Elec-
tricity Needs Are Growing Unsustainably,” IEEE Spectrum (2021).

6. V. Anand, Z. Xie, M. Stolet, et al., “The Odd One Out: Energy Is Not Like
Other Metrics,” in HotCarbon 2022: 1st Workshop on Sustainable Com-
puter Systems Design and Implementation (2022).

7. K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, “Rapl
in Action: Experiences in Using Rapl for Power Measurements,” ACM
Transactions on Modeling and Performance Evaluation of Computing Sys-
tems 3, no. 2 (2018): 1–26.

8. Foundation, T.A.S, “Apache Spark Lightning-Fast Custer Computing,”
(2015), http://spark.apache.org/.

9. M. M. Saeed, Z. Al Aghbari, and M. Alsharidah, “Big Data Clustering
Techniques Based on Spark: A Literature Review,” PeerJ Computer Sci-
ence 6 (2020): e321.

10. J. Leverich and C. Kozyrakis, “On the Energy (In) Efficiency of
Hadoop Clusters,” ACM SIGOPS Operating Systems Review 44, no. 1
(2010): 61–65.

11. L. Mashayekhy, M. M. Nejad, D. Grosu, Q. Zhang, and W. Shi,
“Energy-Aware Scheduling of Mapreduce Jobs for Big Data Applica-
tions,” IEEE Transactions on Parallel and Distributed Systems 26, no. 10
(2015): 2720–2733, https://doi.org/10.1109/TPDS.2014.2358556.

12. I. N. Goiri, W. Katsak, K. Le, T. D. Nguyen, and R. Bianchini, “Para-
sol and Greenswitch: Managing Datacenters Powered by Renewable
Energy,” in Proceedings of the Eighteenth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems. ASPLOS ‘13 (ACM, 2013), 51–64, https://doi.org/10.1145/2451116.
2451123.

13. H. Li, H. Wang, S. Fang, Y. Zou, and W. Tian, “An Energy-Aware
Scheduling Algorithm for Big Data Applications in Spark,” Cluster Com-
puting 23 (2020): 593–609.

14. T. D. S. Gonçalves, A. C. S. Beck, and A. F. Lorenzon, “Explorando a
variabilidade de processo para otimizar a eficiência energética em servi-
dores de nuvem,” in Anais do XXIV Simpósio em Sistemas Computa-
cionais de Alto Desempenho (SBC, 2023), 229–240, https://doi.org/10.
5753/wscad.2023.235799.

15. X. Gu, R. Hou, K. Zhang, L. Zhang, and W. Wang, “Application-Driven
Energy-Efficient Architecture Explorations for Big Data,” in Proceedings
of the 1st Workshop on Architectures and Systems for Big Data (ACM, 2011),
34–40.

16. J. L. Berral, Í. Goiri, T. D. Nguyen, R. Gavalda, J. Torres, and
R. Bianchini, “Building Green Cloud Services at Low Cost,” in Proceed-
ings of the 2014 IEEE 34th International Conference on Distributed Com-
puting Systems (ICDCS) (IEEE, 2014), 449–460.

17. C. H. Forte, A. Manacero, R. S. Lobato, and R. Spolon, “An
Energy-Aware Task Scheduler Based in Ownership Fairness Applied to
Federated Grids,” in Proceedings of the 2018 IEEE Symposium on Com-
puters and Communications (ISCC) (IEEE, 2018), 30–33.

18. D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, “Energy
Proportional Datacenter Networks,” ACM SIGARCH Computer Architec-
ture News 38, no. 3 (2010): 338–347, https://doi.org/10.1145/1816038.
1816004.

19. T. Baker, B. Al-Dawsari, H. Tawfik, D. Reid, and Y. Ngoko, “Greedi:
An Energy Efficient Routing Algorithm for Big Data on Cloud,” Ad Hoc
Networks 35 (2015): 83–96.

20. K. H. Kim, A. Beloglazov, and R. Buyya, “Power-Aware Provisioning
of Cloud Resources for Real-Time Services,” in Proceedings of the 7th Inter-
national Workshop on Middleware for Grids, Clouds and e-Science. MGC
‘09 (ACM, 2009), 1:1–1:6, https://doi.org/10.1145/1657120.1657121.

21. N. Zacheilas, S. Maroulis, and V. Kalogeraki, “A Framework for Effi-
cient Energy Scheduling of Spark Workloads,” in Proceedings of the 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS) (IEEE, 2017), 1132–1142.

22. F. Bernardo, A. Yokoyama, B. Schulze, and M. Ferro, “Avaliação do
consumo de energia para o treinamento de aprendizado de máquina uti-
lizando single-board computers baseadas em arm,” in Simpósio em Sis-
temas Computacionais de Alto Desempenho (SSCAD) (SBC, 2021), 60–71.

23. J. Ousterhout, “Always Measure One Level Deeper,” Communications
of the ACM 61, no. 7 (2018): 74–83.

24. T. Wuttge, “Benchframe: A Framework for Benchmarking Power
Monitoring Tools,” (Ph.D. Thesis, Vrije Universiteit Amsterdam) (2025).

20 of 21 Concurrency and Computation: Practice and Experience, 2026

 15320634, 2026, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70565 by C

apes, W
iley O

nline L
ibrary on [04/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/dccspeed/pdu-spark-energy
https://github.com/dccspeed/pdu-spark-energy
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1016/j.jpdc.2014.08.003
https://doi.org/10.1016/j.jpdc.2014.08.003
https://doi.org/10.1016/j.jpdc.2014.08.003
https://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
https://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
https://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
https://www.iea.org/reports/data-centres-and-data-transmission-networks
https://www.iea.org/reports/data-centres-and-data-transmission-networks
https://www.iea.org/reports/data-centres-and-data-transmission-networks
http://spark.apache.org/
http://spark.apache.org/
https://doi.org/10.1109/TPDS.2014.2358556
https://doi.org/10.1109/TPDS.2014.2358556
https://doi.org/10.1145/2451116.2451123
https://doi.org/10.1145/2451116.2451123
https://doi.org/10.1145/2451116.2451123
https://doi.org/10.5753/wscad.2023.235799
https://doi.org/10.5753/wscad.2023.235799
https://doi.org/10.5753/wscad.2023.235799
https://doi.org/10.1145/1816038.1816004
https://doi.org/10.1145/1816038.1816004
https://doi.org/10.1145/1816038.1816004
https://doi.org/10.1145/1657120.1657121
https://doi.org/10.1145/1657120.1657121

25. M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky, “A Com-
parative Study of Methods for Measurement of Energy of Computing,”
Energies 12, no. 11 (2019), https://doi.org/10.3390/en12112204.

26. P. Patel, E. Choukse, C. Zhang, et al., “Characterizing Power Man-
agement Opportunities for Llms in the Cloud,” in Proceedings of the
29th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 3. ASPLOS ‘24 (Associa-
tion for Computing Machinery, 2024), 207–222, https://doi.org/10.1145/
3620666.3651329.

27. N. D. O. Volpini, V. Dias, and D. Guedes, “Uma análise multicamadas
do consumo de energia em cargas big data,” in Simpósio em Sistemas
Computacionais de Alto Desempenho (SSCAD) (SBC, 2024), 324–335,
https://doi.org/10.5753/sscad.2024.244769.

28. E. Higgs, “Ehiggs/Spark-Terasort,” (2018), https://github.com/
ehiggs/spark-terasort.

29. M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “Sparkbench: A
Spark Benchmarking Suite Characterizing Large-Scale In-Memory Data
Analytics,” Cluster Computing 20, no. 3 (2017): 2575–2589.

30. M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “Sparkbench: A
Comprehensive Benchmarking Suite for in Memory Data Analytic Plat-
form Spark,” in Proceedings of the 12th ACM International Conference on
Computing Frontiers (ACM, 2015), 53.

31. A. Spark, “Tuning Spark,” (2015), https://spark.apache.org/docs/2.2.
0/tuning.html.

32. E. Asyabi, M. Sharifi, and A. Bestavros, “ppxen: A Hypervisor Cpu
Scheduler for Mitigating Performance Variability in Virtualized Clouds,”
Future Generation Computer Systems 83 (2018): 75–84, https://doi.org/
10.1016/j.future.2018.01.015.

33. V. S. Conceição, N. D. O. Volpini, and D. Guedes, “Seshat: uma
arquitetura de monitoração escalável para ambientes em nuvem,” in
Anais do XVII Workshop em Desempenho de Sistemas Computacionais e
de Comunicaç ao, Natal-RN (Sociedade Brasileira de Computaçao (SBC),
2018), https://doi.org/10.5753/wperformance.2018.3336.

Concurrency and Computation: Practice and Experience, 2026 21 of 21

 15320634, 2026, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70565 by C

apes, W
iley O

nline L
ibrary on [04/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.3390/en12112204
https://doi.org/10.3390/en12112204
https://doi.org/10.1145/3620666.3651329
https://doi.org/10.1145/3620666.3651329
https://doi.org/10.1145/3620666.3651329
https://doi.org/10.5753/sscad.2024.244769
https://doi.org/10.5753/sscad.2024.244769
https://github.com/ehiggs/spark-terasort
https://github.com/ehiggs/spark-terasort
https://github.com/ehiggs/spark-terasort
https://spark.apache.org/docs/2.2.0/tuning.html
https://spark.apache.org/docs/2.2.0/tuning.html
https://spark.apache.org/docs/2.2.0/tuning.html
https://doi.org/10.1016/j.future.2018.01.015
https://doi.org/10.1016/j.future.2018.01.015
https://doi.org/10.1016/j.future.2018.01.015
https://doi.org/10.5753/wperformance.2018.3336
https://doi.org/10.5753/wperformance.2018.3336

	A Multi-Layered Analysis of Energy Consumption in Spark
	Abstract
	1 | Introduction
	2 | Related Works
	3 | Methodology
	3.1 | Algorithms and Configurations
	3.2 | Experimental Environment
	3.2.1 | Execution Environment
	3.2.2 | Resource Provisioning Configuration
	3.2.3 | Monitoring Environment
	3.2.4 | Experiments
	3.2.5 | Multi-Layered Analysis

	4 | Layer 1: Resource Provisioning
	4.1 | Terasort (Figure 3)
	4.2 | K-Means (Figure 4)
	4.3 | PageRank (Figure 5)1
	4.4 | SVM (Figure 6)
	4.5 | Matrix Factorization (Figure 7)
	4.6 | Discussion and Takeaways From Layer 1

	5 | Layer 2: System-Level Resource Utilization
	5.1 | The Impact of Collected Performance Metrics
	5.2 | Discussion and Takeaways From Layer 2 --- Performance Metrics
	5.3 | The Incremental Impact of User-Defined Configurations and Collected Performance Metrics
	5.4 | Discussion and Takeaways From Layer 2---Incremental Impact of Factors

	6 | Layer 3: Application-Level Resource Utilization
	6.1 | Discussion and Takeaways From Layer 3

	7 | Conclusion and Future Work
	Acknowledgments
	Funding
	Conflicts of Interest
	Data Availability Statement
	Endnotes
	References

