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ABSTRACT
The widespread of applications like e-commerce and recom-
mendation systems requires the use of efficient customiza-
tion techniques and user preferences handling. In database
community a lot of research on this topic has been focused
on extending standard SQL with preference facilities in or-
der to provide personalized query answering. More specif-
ically, user preferences are an essential ingredient of per-
sonalized database applications. In this paper, we consider
the conditional preference queries (cp-queries) of CPrefSQL
query language where user preferences are specified by a
set of conditional rules. We propose new algorithms based
on a technique we called preference partition that outper-
form the state-of-the-art algorithms for CPrefSQL prefer-
ence operators significantly decreasing the number of scans
over database.

CCS Concepts
•Information systems → Query languages; Structured
Query Language;

Keywords
Query Language, Preferences, SQL Extension, Relational
Algebra

1. INTRODUCTION
The need for incorporating preference querying in database
technology is a very important issue in a variety of appli-
cations ranging from e-commerce to personalized search en-
gines. A lot of research work has been dedicated to this topic
in recent years [13, 8, 14, 9]. The main interest is essentially
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focused on enhancing standard query languages with new
operators enabling the query engine to return the most pre-
ferred tuples according to a given preference ordering.

An important work in this scenario is the CPrefSQL lan-
guage, an extension of SQL able to express conditional
preference queries (cp-queries) where user’s preferences are
taken into account in the query answering process [10, 15]. A
cp-query incorporates the usual hard constraints (WHERE
clause) as well as soft constraints specified by conditional
preference rules (cp-rules). The cp-queries allow several
types of applications return more customized answers to
users. The Example 1 illustrates a typical scenario of pref-
erence application.

Example 1 (Motivating Example). Let us suppose
we are given a database relation Travels storing informa-
tion about travel packages with attributes D (Destination),
P (Price), Du (Duration) and I (Itinerary). The following
statements express user preferences about trips: (1) between
two travel options with the same price, I prefer cruise than
beach itineraries; (2) between two travel options with the
same duration, I prefer beach than urban itineraries; (3) for
cruise itineraries, I prefer options costing less than $2500.
These preference statements are declared through the CREATE
PREFERENCES instruction below:

CREATE PREFERENCES MyPrefs FROM Travels AS
(I= ' cruise ' ) > (I= ' beach ' ) [D, Du] AND
(I= ' beach ' ) > (I= ' urban ' ) [P, D] AND
IF (I= ' cruise ' ) THEN

(P < 2500) > (P >= 2500) [D,Du];

Next, the user can ask for the three travel options that are
not ecological and most fulfill his preferences MyPrefs.

SELECT * FROM Travels
WHERE I <> ' ecological '
ACCORDING TO PREFERENCES 3, MyPrefs;

In this query, the hard constraint is I <> ‘ecological’ and
the soft constraints are given by the rules MyPrefs. The
list of attributes within square brackets in the rules are used
to compute preferences under the ceteris paribus seman-
tics. According to this semantics the attributes inside square
brackets are indifferent, that is, when two tuples are com-
pared the values for these attributes are not important. This
matter will be detailed in Section 2. So, attributes neither
inside brackets nor in the right side of the rules (called the
ceteris paribus attributes) must have identical values. For
instance, the ceteris paribus attribute of first rule is P .

The CPrefSQL language extends SQL with two algebraic
operators Select-Best and SelectK-Best . The former cal-

972

http://dx.doi.org/10.1145/2851613.2851659


culates the most preferred tuples with a semantics based on
the BMO model (best-matches only) of [16]: the result is the
set of tuples which are not dominated by others. The lat-
ter adjusts returned tuples by Select-Best in order to make
up the k required tuples according to the preference hier-
archy established by the preference rules. If k ≤ N where
N is the total amount of most preferred tuples returned by
Select-Best , then we are done. If k > N , then the hierar-
chy of the preference order is taken into account to return
the remaining amount of tuples required.

A baseline approach to implement the cp-queries is simply
by translating them into a SQL query. It is well known that
any operator whose semantics follows the BMO model does
not enhance the expressive power of SQL, since it can be
expressed in relational algebra [8], by means of a rewriting
procedure responsible to translate a preference query into
a standard SQL-compliant query [13]. However, an explicit
definition of preference operators enables separating prefer-
ence issues from the other aspects of the query, allowing to
design specific and efficient algorithms to implement these
operators.

As we are dealing with databases, an algorithm should al-
ways optimize how it scans the input avoiding I/O opera-
tions. So, the complexity of algorithms for processing cp-
queries is mainly related with the number of tuples in the
input relation. This is the key point that must be balanced
to design efficient algorithms.

The state-of-the-art algorithms follow the lines of a basic
BNL (block nested loop) technique. In [10], the BNL* al-
gorithm was proposed for evaluating the Select-Best oper-
ator. It uses the technique introduced in [1] for transitive
closure evaluation. Then, the work of [15] developed the al-
gorithms BNL** and R-BNL**. They are coupled with a
Datalog Program [5] responsible for deciding between two
tuples which one is preferred according to a preference or-
der inferred by transitivity. While BNL** implements the
Select-Best operator , R-BNL** (Ranked-BNL**) returns
the top-k preferred tuples, following the SelectK-Best op-
erator.

In this paper, we go a step beyond, by proposing more ef-
ficient algorithms to solve cp-queries. Our algorithms use
a technique we called preference partition where the input
is partitioned according to the values of ceteris paribus at-
tributes. While BNL algorithms compare one tuple with all
the others, here we split the tuples in partitions, so that
only tuples in the same partition are compared. Moreover,
our partition algorithms take into account a knowledge base
that already contains the transitive closure, avoiding recur-
sive calls present in the BNL** algorithms. The Figure 1
shows CPrefSQL algorithms evolution.

SQL BNL Algorithms Partition Algorithms

Figure 1: CPrefSQL Algorithms Evolution

Main contributions. The main contributions of this paper
are summarized as follows: (1) development of the new and
efficient preference partition technique to process cp-queries;
(2) design of the algorithms Partition and R-Partition by us-
ing this new technique; (3) implementation of proposed al-
gorithms following the on top approach over the PostgreSQL
database system; (4) an exhaustive set of experiments com-

paring the state-of-the-art algorithms, the proposed algo-
rithms and their corresponding SQL counterpart; (5) gen-
eralization of the preference model initially proposed in [15]
to support more expressive preferences.

Organization of the paper. In Section 2, we present
the theoretical background underlying the cp-queries and
related algebraic operators. In Section 3, we firstly discuss
about the dominance test problem, the key task in the al-
gorithm, and we present efficient algorithms using the pref-
erence partition technique. In Section 4, we discuss the ex-
perimental results. In Section 5, we discuss some related
work. Finally, in Section 6 we conclude the paper and dis-
cuss some future work. For lack of space, the proofs of the
results stated in this paper are given in the Appendix A.

2. CP-QUERIES
The user preferences are expressed by if-then rules com-
posed by predicates over attributes. In the present work,
we propose an extension of simple equality predicates de-
fined in [15] by supporting generic predicates Aiθa, where
a ∈ Dom(Ai) and θ ∈ {<,≤,=, 6=,≥, >}. The generic pred-
icates allow an improvement on the expressive power, for ex-
ample, we can express preferences like: “for cruise itineraries,
I prefer those with price lower than $2500”.

Definition 1 (CP-Rules and CP-Theory). Let a
relational schema R(A1, ..., Al). A conditional preference
rule, or cp-rule, over R is an expression in the format
ϕ : Cϕ → Q+

ϕ (Aϕ) � Q−ϕ (Aϕ)[Wϕ], where:

1) The attribute Aϕ ∈ R is the preference attribute and
Wϕ ⊂ R is the set of indifferent attributes such that
Aϕ /∈Wϕ;

2) The predicates Q+
ϕ (Aϕ) and Q−ϕ (Aϕ) represent the pre-

ferred and non preferred values for Aϕ, respectively, such
that {a ∈ Dom(Ai) | a |= Q+

ϕ (Aϕ)} ∩ {a ∈ Dom(Ai) |
a |= Q+

ϕ (Aϕ)} = ∅;
3) The preference condition Cϕ is a conjunction Q(A1) ∧

... ∧ Q(Ak) such that Q(Ai) is a predicate over Ai and
{A1, ..., Ak} ∈ R and {A1, ..., Ak} ∩ ({Aϕ} ∪Wϕ) = ∅;

A conditional preference theory on R, or cp-theory, Γ is a
finite set of cp-rules on R.

Example 2 (CP-Theory). The preference statements
of Example 1 are represented by cp-theory Γ = {ϕ1, ϕ2, ϕ3}
where:

ϕ1 : → (I = cruise) � (I = beach)[D,Du];

ϕ2 : → (I = beach) � (I = urban)[P,D];

ϕ3 : (I = cruise)→ (P < 2500) � (P ≥ 2500)[D,Du];

The processing of cp-queries have to work only over consis-
tent cp-theories, since irreflexivity of the preference ordering
is not a desirable situation in a database context. This no-
tion of consistency has been addressed in [15]. Thus, when a
set of cp-rules is declared by CREATE PREFERENCES command
the consistency test is executed prior to registration of them
into the system catalog.

Semantics. Now we come to the task of how to compare
two tuples according to a cp-theory. Let Tup(R) be the
set of all possible tuples over a relational schema R. A
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Destination Price Duration Itinerary

t1 Angra 2000 4 cruise
t2 Buzios 2000 5 beach
t3 Salvador 2600 6 cruise
t4 Belo Horizonte 2700 5 urban
t5 Rio de Janeiro 2600 7 beach

(a)

t1

t2 t3

t4 t5

(b)

π

Preference Operator

σ

1

...R1 Rn

(c)

Figure 2: (a) An instance of relation Travels; (b) The better-than graph for relation Travels; (c) The execution plan for a
CPrefSQL block.

preference order over Tup(R) is a strict partial order over
Tup(R), that is an irreflexive and transitive binary relation
over Tup(R). In this paper, we use the ceteris paribus se-
mantics (“everything else equal”) [4] to compare tuples.

Given two tuples t and t′ and a cp-rule ϕ. The tuple t is
preferred to t′ according to ϕ, denoted by t �ϕ t′, if: (1) t
and t′ satisfy the cp-rule condition Cϕ, (2) t and t′ have
identical values for the attributes not appearing in Wϕ ∪
{Aϕ} and (3) t satisfies Q+

ϕ (Aϕ) and t′ satisfies Q−ϕ (Aϕ). We
can also infer a preference order by transitivity as addressed
by Theorem 1.

Theorem 1. Let a cp-theory Γ and a relational schema
R. Let t, t′ ∈ Tup(R) be two tuples. The tuple t is preferred
to t′ according to Γ, denoted by t �Γ t

′, if and only if there
exists tuples t1, ..., tm+1 ∈ Tup(R) and cp-rules ϕ1, ..., ϕm ∈
Γ such that t1 �ϕ1 ... �ϕm tm+1, t = t1 and t′ = tm+1 [17].

Remark that, in this paper, we use the terms dominates and
is preferred to as synonymous. The Example 3 illustrates the
concept of preference order under ceteris paribus semantics.
For more details please see [15].

Example 3. Let us consider the cp-rule ϕ2 of Example
2 and the tuples t2 and t4 of Figure 2(a). We can affirm
that t2 �ϕ2 t4 since: (1) t2 and t4 satisfy the rule condition
(empty conditions are satisfied by any tuple); (2) both tuples
have the same value for ceteris paribus attribute Du; (3) for
the preference attribute, t2 has a preferred value (I = beach)
and t4 has a non preferred value (I = urban). Let us con-
sider the instance of Travels described in Figure 2(a) and
the cp-theory Γ = {ϕ1, ϕ2, ϕ3} given in Example 2. The or-
der induced on Travels by the cp-theory Γ is illustrated by
the better-than graph depicted in Figure 2(b). In this graph,
a path from t to t′ means that t dominates t′ according to Γ.

Operators. There are two algebraic operators developed
to evaluate cp-queries: Select-Best [10] and SelectK-Best
[15]. Given a cp-theory Γ and a relation instance r, the
Select-Best operator selects the most preferred tuples of
r (those which are not dominated by others) according to
Γ, while the SelectK-Best gets the set of top-k tuples of
r with respect to the preference hierarchy imposed by Γ.
More precisely, the operation SelectK-BestΓ,k(r) returns k
tuples of r with the smallest levels (Definition 2).

Definition 2 (Level). Let a cp-theory Γ over the re-
lational schema R, a database instance r over R and a tuple
t ∈ r. The level of t, denoted by lv(t), according to Γ is
inductively defined as follows:

1) If @t′ ∈ r such that t′ �Γ t then lv(t) = 0;

2) Otherwise lv(t) = max{lv(t′) | t′ �Γ t}+ 1.

Example 4. Let us consider the preference ordering in-
duced by Γ over the tuples in Travels stated on Exam-
ple 3. Thus, we have: lv(t1) = 0, lv(t2) = lv(t3) = 1,
lv(t4) = max{lv(t1), lv(t2), lv(t3)} + 1 = 2, lv(t5) = 2.
Thus, the result of query of Example 1, computed by op-
eration SelectK-BestΓ(3, Travels), is {t1, t2, t3}.

The CPrefSQL query language is an extension of the stan-
dard SQL with the two new preference operators Select-
Best and SelectK-Best. The simple query block of CPref-
SQL is given below.
SELECT <attribute -list > FROM <tables >
--hard constraints
WHERE <conditions >
--soft constraints
ACCORDING TO PREFERENCES [k,] <cp -rules >;

The parameter <cp-rules> on clause ACCORDING TO PREF-

ERENCES is a list of cp-rules declared by the CREATE PREFER-

ENCES command (as illustrated in Example 1). The canoni-
cal execution plan associated to a CPrefSQL block (without
aggregate constructors) is shown in Figure 2(c). The sym-
bols σ, π and 1 denote the usual relational algebra operators
Selection, Projection and Join, respectively. The parame-
ter k is a non-negative integer and it is optional. If k is
not provided, the query is evaluated using the Select-Best,
otherwise the evaluation uses the SelectK-Best operator.

3. ALGORITHMS FOR CP-QUERIES
EVALUATION

In [15] the algorithms BNL** and R-BNL** were proposed
to evaluate the operators Select-Best and SelectK-Best,
respectively. These BNL algorithms are based on a Block
Nested Looping strategy of [3], and they use a Datalog pro-
gram [5] to perform the dominance test : “given a cp-theory
Γ and two tuples t and t′, decide if t �Γ t

′”.

In order to simplify the comparison between tuples, we pro-
pose a new dominance test based on a knowledge base where
the transitive closure is already computed. Furthermore, we
developed significantly more efficient algorithms by using
this knowledge base.

3.1 Theoretical Foundations
An alternative to the Datalog dominance test is to use the
strategy of building a knowledge base. The idea is to scan
a cp-theory extracting all possible comparisons (including
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those obtained by transitive closure) and storing them in a
called knowledge base. In this way, to perform a dominance
test, just a scan in the knowledge base is necessary, avoiding
Datalog recursive runs. Remark that in this approach an
additional preprocessing is done before storing user prefer-
ences in system catalog. The construction of a knowledge
base starts by computing the set of essential formulas (Def-
inition 3).

Definition 3 (Essential Formula). Let a cp-theory
Γ over a relational schema R(A1, ..., Al). Let QΓ(Ai) the
set of predicates for attribute Ai present in Γ. An essential
formula is inductively defined as follows:

1) A predicate Q(Ai) is an essential formula such that
Q(Ai) ∈ QΓ(Ai) and Ai ∈ R;

2) If f is an essential formula and Ai ∈ R does not appear
in f , then f ∧ Q(Ai) is an essential formula such that
Q(Ai) ∈ QΓ(Ai).

The notation FΓ represents all essential formulas over Γ.

Example 5. Let us consider the cp-theory Γ of Example
2. The set of essential formulas for this cp-theory is

FΓ =


(I = cruise), (I = beach), (I = urban), (P < 2500),
(P ≥ 2500), (I = cruise) ∧ (P < 2500),
(I = beach) ∧ (P < 2500), (I = urban) ∧ (P < 2500),
(I = cruise) ∧ (P ≥ 2500), (I = beach) ∧ (P ≥ 2500),
(I = urban) ∧ (P ≥ 2500)


Let Att(f) be the set of attributes appearing in f . Consider
the essential formulas f : g ∧ h ∧w and f ′ : g′ ∧ h ∧w′ such
that g, g′, h, w and w′ are conjunctions of predicates. The
formula f is preferred to f ′ according to a cp-rule ϕ, denoted
by f �ϕ f

′, if g = Cϕ ∧Q+
ϕ (Aϕ) and g′ = Cϕ ∧Q−ϕ (Aϕ) and

Att(w) ⊆ Wϕ and Att(w′) ⊆ Wϕ. Once built the essential
formulas, the next step is to identify all possible comparisons
between them according to Γ (Definition 4). Intuitively, a
comparison between two formulas means that a formula is,
directly or indirectly, preferred to another formula according
to a cp-theory.

Definition 4 (Comparison). Let a cp-theory Γ. A
comparison over Γ is a statement in the form b : (f+

b �
f−b )[Wb]) where there exists essential formulas f1, ..., fm+1 ∈
FΓ and cp-rules ϕ1, ..., ϕm ∈ Γ such that:

1) The formula f+
b is preferred to f−b , f+

b = f1 and f−b =
fm+1 and f1 �ϕ1 ... �ϕm fm+1;

2) The set Wb = (Wϕ1 ∪ ... ∪Wϕn) ∪ ({Aϕ1} ∪ ... ∪ {Aϕn})
are the indifferent attributes.

Let b be a comparison over a cp-theory Γ. Two tuples t, t′

can be compared using a comparison b, denoted by t �b t
′

if t |= f+
b , t′ |= f−b and t.Ai = t′.Ai for all Ai /∈ Wb. The

Lemma 1 guarantees the existence of a comparison when
two tuples are directly comparable by a cp-rule (the proof
is given in the Appendix A).

Lemma 1. Let Γ be a cp-theory and ϕ ∈ Γ be a cp-rule.
If t �ϕ t

′ then there exists a comparison b such that t �b t
′.

We denote by K∗Γ the set of all comparisons on Γ. Two
tuples t, t′ can be compared using K∗Γ, denoted by t �K∗Γ

t′,

if there exists b ∈ K∗Γ such that t �b t
′. The Theorem 2

ensures that t �K∗Γ
t′ if and only if t �Γ t′ (the proof is

given in the Appendix A).

Theorem 2. Let us consider two tuples t, t′ and a cp-
theory Γ. Then t �K∗Γ

t′ if and only if t �Γ t
′.

The set of comparisons K∗Γ may contains unnecessary com-
parisons due to indifferent attributes. Consider, for instance,
the comparisons b : (I = cruise) � (I = beach)[D, I, P ] and
b′ : (I = cruise) ∧ (P ≥ 2500) � (I = beach) ∧ (2000 ≤ P <
2500)[D, I, P ]. Notice that �b′⊂�b, this happens because
b is more generic than b′. We can verify if a comparison
b : (f+ � f−)[Wb] ∈ K∗Γ is more generic than a comparison
b′ : (g+ ∧ h+ � g− ∧ h−)[Wb′ ] ∈ K∗Γ if one of the following
conditions are satisfied:

1) f+ = g+, f− = g−, h+ = h− and Wb′ ⊆Wb;

2) f+ = g+, f− = g−, (Att(h+) ∪ Wb′) ⊆ Wb and
(Att(h−) ∪Wb′) ⊆Wb.

Taking advantage of this property we build a knowledge base
considering only the essential comparisons (Definition 5).

Definition 5 (Knowledge Base). Let K∗Γ be the set
of all comparisons over a cp-theory Γ. A comparison b ∈ K∗Γ
is essential if there no exists another comparison b′ ∈ K∗Γ
such that b′ is more generic than b. The knowledge base KΓ

is the set of all essential comparisons in K∗Γ.

Example 6. Let us consider the cp-theory Γ and its es-
sential formulas of Example 5. The knowledge base for this
cp-theory is KΓ = {b1, ..., b5} where:

b1 : (I = cruise) � (I = urban)[D,Du, I, P ];

b2 : (I = cruise) ∧ (P < 2500) �
I = beach) ∧ (P ≥ 2500)[D,Du, I, P ];

b3 : (I = beach) � (I = urban)[D, I, P ];

b4 : (I = cruise) � (I = beach)[D,Du, I];

b5 : (I = cruise) ∧ (P < 2500) �
(I = cruise) ∧ (P ≥ 2500)[D,Du, P ].

The Theorem 3 ensures that if t �K∗Γ
t′ then t �KΓ t′ (the

proof is given in the Appendix A). Thus, once the knowledge
base is built, we can perform the dominance test “t �Γ t′”
by looking for an essential comparison b in KΓ such that
t �b t

′.

Theorem 3. Let a cp-theory Γ and two tuples t, t′. If
t �K∗Γ

t′ then t �KΓ t
′.

BNL** Algorithms with Knowledge Base (BNL-
KB). In order to compare the two types of dominance test,
we modify the BNL** algorithms proposed in [15] by replac-
ing the Datalog dominance test by the knowledge base dom-
inance test. The idea is to avoid recursive runs from Datalog
for each dominance test, by providing to the algorithm a pre-
computed knowledge base already containing the transitive
closure. In general, this modification optimizes the BNL**
algorithms as will be discussed in the following complexity
analysis. The Section 4 presents the experimental results of
this comparison.

3.2 Partition Algorithms
The main result of this paper is the development of partition
algorithms which use a new divide-and-conquer technique
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called preference partition. The intuition of the preference
partition technique is: for each comparison b, partitions are
built according to attributes not present in Wb; these are the
ceteris paribus attributes and must have the same values for
all tuples. Then, inside a partition where all tuples have the
same values for ceteris paribus attributes, we can identify the
dominant, dominated and incomparable tuples according to
essential formulas of b.

The Algorithm 1, Partition, evaluates the Select-Best op-
erator by using the partition technique. This algorithm uses
the procedure BestPartition (Algorithm 2) in an incre-
mental way to select the dominant tuples. In fact, for each
iteration, the procedure BestPartition returns the set of
dominant tuples S+ and the set of dominated tuples S−.
As the set S− is not needed, it is discarded. At the end, the
set S+ has the dominant tuples of r according to Γ.

Algorithm 1: Partition(r,Γ)

1: S+ ← r
2: for all b ∈ KΓ do
3: S+, S− ← BestPartition(S+, b)

4: return S+

The procedure BestPartition splits the set of tuples S into
two sets: S+ (dominant tuples) and S− (dominated tu-
ples). The first step is to build a hash table of partitions
P# = (t ∈ S 7→ {t/Wb}) over S by using the values of tu-
ple attributes not present in Wb (ceteris paribus attributes).
Next, for each partition set P in P#, the algorithm sep-
arates the tuples into three subsets: preferred tuples P+,
non preferred tuples P− and incomparable tuples P ∗. The
tuples in P ∗ are always dominant because they cannot be
compared by b. The preferred tuples satisfy the formula f+

b

while non preferred tuples satisfy the formula f−b . As all
tuples in the same partition have identical values for ceteris
paribus attributes, then all tuples in P+ dominate the tuples
in P−. After the subsets P+, P− and P ∗ are computed, the
procedure check if P+ is empty. If yes, all tuples in P are
dominant because any tuple is dominated. If no, P− has the
dominated tuples and the dominant tuples are those in P+

and in P ∗.

Algorithm 2: BestPartition(S, b)

1: P# ← HashTable(S, b)
2: S+ ← {};S− ← {}
3: for all P ∈ P# do
4: P+ ← {t ∈ P | t |= f+

b }
5: P− ← {t ∈ P | t |= f−b }
6: P ∗ ← {t ∈ P | t 6|= f+

b and t 6|= f−b }
7: if P+ = {} then
8: S+ ← S+ ∪ P
9: else

10: S+ ← S+ ∪ P+ ∪ P ∗
11: S− ← S− ∪ P−
12: return S+, S−

In the Figure 3(a) we can see the execution of Partition
considering the relation Travels of Figure 2(a) and the
knowledge base of Example 6. For the first comparison b1,
there are no ceteris paribus attributes and the algorithm
builds only one partition containing all tuples. The tuple
t4 in bold is dropped because it is dominated by t1 and
t3 according to b1. Considering b2, again there is just one
partition and the tuple t5 in bold is dropped. When b3

is evaluated, the partitions are built according to attribute
Du not present in Wb3 . There are three partitions: {t1} for
(Du = 4), {t2} for (Du = 5) and {t3} for (Du = 6), but any
tuple is dominated. For comparison b4, there are two par-
titions and t2 is dropped. At the end, when the algorithm
considers the comparison b5, there is only one partition, and
t3 is dropped. Thus, the final result of the algorithm is {t1}.

Partitions
b1 { t1

P+
, t2
P∗
, t3
P+

, t4
P−

, t5
P∗
}

b2 { t1
P+

, t2
P∗
, t3
P∗
, t5
P−
}

b3 { t1
P∗
}, { t2

P+
}, { t3

P∗
}

b4 { t1
P+

, t2
P−
}, { t3

P+
}

b5 { t1
P+

, t3
P−
}

(a)

Partitions
b1 { t2

P∗
, t3
P+

, t4
P−

, t5
P∗
}

b2 { t2
P∗
, t3
P∗
, t5
P−
}

b3 { t2
P+
}, { t3

P∗
, t5
P+
}

b4 { t2
P−
}, { t3

P+
, t5
P−
}

b5 { t2
P∗
}, { t3

P−
}

(b)

Figure 3: (a) Partitions for all tuples; (b) Partitions for
tuples {t2, ..., t5}.
The algorithm R-Partition (Algorithm 3) uses the pref-
erence partition technique to implement the operator
SelectK-Best. This algorithm uses a list L to store the
top-k tuples sorted by level. The algorithm stops when L
has k tuples or all input tuples are in L. At the beginning,
the set S+ has all input tuples. Then, for each iteration of
outer loop, the dominant tuples are kept on S+ and dom-
inated ones are moved to S−. At the end of iteration, the
algorithm appends the tuples of S+ into L and checks if L
has k tuples. In negative case, the dominated tuples are
moved to S+ and the algorithm proceeds to the next itera-
tion. This process guarantees that if t appears first than t′ in
L then lv(t) ≤ lv(t′). The Example 7 presents an execution
of algorithm R-Partition.

Algorithm 3: R-Partition(r,Γ, k)

1: S+ ← r;L← List()
2: while |L| < k and S+ 6= {} do
3: S− ← {}
4: for all b ∈ KΓ do
5: S+, S ← BestPartition(S+, b)
6: S− ← S− ∪ S
7: L.Append(S+)
8: S+ ← S−

9: return first k tuples of L

Example 7. Consider the operation SelectK-
BestΓ(3, Travels) of Example 4. This operation is
evaluated by R-Partition algorithm as follows: (1) The
first iteration of outer loop produces the same partitions of
Figure 3(a), at this point L = {t1} and S+ = {t2, ..., t5}.
Another iteration is required because |L| < 3 and there are
tuples in S+ to be processed; (2) The Figure 3(b) shows
the partitions of the second iteration. At this moment, the
list L = {t1, t2, t3}, then the algorithm stops and return the
tuples in L.

3.3 Complexity Analysis
The complexity analysis of algorithms takes into account
the number of cp-rules in Γ (m), the number of attributes of
input relation (l) and the number of input tuples (n). First,
we analyze the building cost and size of the knowledge base
(KΓ) used in our proposed algorithms, then we compare the
complexity BNL algorithms and partition algorithms.
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Knowledge Base Complexity. First, we scan the cp-
rules and take the set of predicates QΓ(Ai) for each attribute
Ai. Hence, these predicates are combined to form the essen-
tial formulas. In the worst case, all relation attributes are
present in Γ, |Att(Γ)| = l, and every attribute has a different
predicate for each cp-rule, |QΓ(Ai)| = m. The computation
of all essential formulas must to combine the m predicates of
l attributes. Thus, in the worst case, the cost for obtaining
the essential formulas is O(ml) and |FΓ| = O(ml).

After the computation of essential formulas, the knowledge
base is built by two tasks. First, we try to compare di-
rectly every pair of essential formulas using the cp-rules.
In the worst case, all pairs of essential formulas are di-
rectly comparable and there are m2l direct comparisons.
Next, we can use the Floyd-Warsall algorithm [11] in or-
der to calculate the transitive closure of direct compar-
isons in cubic time. Thus, the final building cost of K∗Γ
is O(ml +m2l + (m2l)3) = O(m6l). In the worst case, every
comparison is essential, then |KΓ| = O(m4l).

Algorithms Complexity. The complexity of algorithm
BNL** is O(n2 × mm). The factor O(mm) represents the
cost of the Datalog dominance test and the term O(n2) is
the cost of nested loops over the input tuples. In the case of
algorithm BNL-KB, the cost of knowledge base dominance
test is a scan in KΓ. Furthermore, the knowledge base must
be built before the execution of the algorithm. Thus, the
complexity of BNL-KB is O(m6l + n2 ×m4l).

The complexity of algorithm Partition is also related to the
building cost and size of the knowledge base. The procedure
BestPartition, called by every comparison in KΓ, scans
the input tuples two times and uses a hash table to store
the partitions. For each tuple, the procedure must read
its attributes to select the correct partition, so its cost is
O(ln). Thus, in the worst case, the complexity of Partition
is O(m6l + ln×m4l).

The complexity of algorithms R-BNL**, R-BNL-KB and R-
Partition is the same complexity of their counterpart algo-
rithms BNL**, BNL-KB and Partition, respectively, mul-
tiplied by the depth level of the cp-theory. The depth
level involves the interaction between the preference rules
through transitive closure. For instance, let Γ = {ϕ1, ϕ2},
where ϕ1 : Cϕ1 → (B = b1) � (B = b2)[Wϕ1 ] and
ϕ2 : Cϕ2 → (B = b2) � (B = b3)[Wϕ2 ]. In this case,
the depth level of Γ is 2, since the maximum length of a
path in its induced BTG is 2.

All algorithms are affected by the number of input tuples (n)
and by the number of cp-rules (m). In addition, the use of
knowledge base is impacted by the number of attributes (l).
In practice, the number of input tuples causes the biggest
impact on the algorithms complexity because n is millions
of times greater than l and m. Thus, our main contribution
is the reduction of the factor O(n2) in BNL algorithms to
O(n) in the partitions algorithms.

4. EXPERIMENTAL RESULTS
In our experiments we compare the performance and scal-
ability of: (1) original BNL algorithms (BNL** and R-
BNL**), (2) BNL algorithms with knowledge base domi-
nance test (BNL-KB and R-BNL-KB), (3) partitions algo-

rithms (Partition and R-Partition) and (4) correspondent
cp-queries translated to recursive SQL – our baseline.

Datasets. The experiments have been performed using the
TPC-H benchmark1 that is a specific benchmark for ad-hoc
querying workloads. The datasets generated from TPC-H in
our experiments have sizes of 16MB, 32MB, 64MB, 128MB,
256MB, 512MB and 1024MB.

Queries. We have adapted the benchmark queries to the
preference context in order to use them in our experiments.
This adaptation has been achieved by using the following
criteria: (a) removal of aggregate functions since they are
not supported by our current implementation; (b) insertion
of the preference clause (ACCORDING TO PREFERENCES) and
(c) changes on the terms of the WHERE clause in order to vary
the reduction factor of the selection operation. The bench-
mark queries Q3, Q5, Q10 and Q18 we have considered in the
experiments enabled an expressive variation on the number
of tuples submitted to the preference operators. We denote
by q this number of tuples corresponding to the query Q
executed over the default dataset of 32MB. More precisely:
q3 = 698, q5 = 7596, q10 = 18644 and q18 = 34263.

Preferences. The preference rules have been built by tak-
ing into account two main features: the number of rules
and the depth level. The number of rules used in the ex-
periments varies from 6 to 40 rules. The depth level of the
cp-theories we have used in our experiments varies from 1
to 6. The conditions of cp-rules considered in the exper-
iments are a boolean composition of two atomic formulas
(Cϕ : Q1(A1)∧Q2(A2)). The choice for varying the features
number of rules and depth level is related with the perfor-
mance impact that they cause in our algorithms. While the
latter is tied with the number of recursive calls, the former
is responsible for the number of dominance test calls. Sum-
marizing, all parameters and their variations are shown in
Figure 4.

Parameter Default Variation

Dataset (MB) 32 16, 32, 64, 128, 256, 512 and
1024

Depth level 2 1, 2, 3, 4, 5 and 6
Number of rules 6 6, 10, 20, 30 and 40
Query Q5 Q3, Q5, Q10 and Q18

k -1 -1, 10, 100, 1000 and 5000

Figure 4: Parameters used for experiments

Performance analysis. In Figure 5(a), we present the re-
sults of the experiments varying the number of rules to com-
pare the performance of algorithms. Note that the BNL**
and BNL-KB performances decrease drastically as the num-
ber of rules increases when compared with the Partition im-
plementation. As the number of rules increases more tuples
can be compared and the dominance test is slower. This
is not the case for the Partition algorithm that reads the
knowledge base less times because the number of scans on
database is reduced by the preference partition technique.

In Figure 5(b), we illustrate the behavior of query execu-
tions when varying the depth level of the cp-theories. This
feature has more impact on the performance of the BNL-
KB algorithm. As the depth level increases, the trend is
that the the knowledge base also increases because there are

1http://www.tpc.org/tpch/
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Figure 5: Performance and scalability results

more comparisons by transitivity.

The preference features considered in Figures 5(a) and 5(b)
show that the performances of CPrefSQL algorithms depend
on the selectivity factor of the rules, that is, the number of
tuples returned. The number of rules and the depth level of
the cp-theory have a considerable negative impact on BNL**
and BNL-KB performances. On the other hand, the perfor-
mance of Partition algorithm has not been strongly affected.

We have also tested the performance of cp-queries by varying
the parameter k (the desired amount of preferred tuples) as
shown in Figure 5(c). The performance of both BNL algo-
rithms and Partition is practically unchanged for different
values of k > 0. As expected, the performance is better
for k = −1 (in this case the algorithms return the most
preferred tuples), since for k > 0 they need extra time to
process different levels.

Scalability results. Figure 5(d) shows how algorithms
scale when the size of the database increases from 16MB
to 1024MB. This experiment evidences the difference in the
complexity between BNL algorithm and Partition algorithm.
The bigger databases have more tuples and this causes more
impact in the BNL algorithm than in Partition algorithm.

In Figure 5(e) we can see the behavior of algorithms when
varying the reduction factor of the WHERE clause, i.e., the
number of tuples directly submitted to the preference oper-
ator. Again, the performance of Partition algorithm is far
better than BNL algorithms because the number of tuples
to be processed.

5. RELATED WORK
The research literature on preference models and extension
of SQL with preference is extensive. The approach of CP-
Nets and TCP-Nets uses a graphical model which captures
users qualitative conditional preference over tuples, under a
ceteris paribus semantics [4, 2]. In this paper, we follow the

logical framework for preference specification introduced in
[17]. This framework is more expressive and generalizes the
CP-Net and TCP-Net approaches.

Regarding extensions of SQL, the research of [13] introduces
the query language Preference SQL which extends SQL with
some built-in base preference constructors and accumula-
tion constructors. The optimizer uses a rewriting proce-
dure which transforms preference queries into standard SQL
queries.

The topic of preference query evaluation has been exten-
sively studied in the literature. In [3], the basic BNL (block-
nested loop) algorithm has been introduced for evaluating
skyline queries. In [7], the algorithm SFS (sort-filter-skyline)
has been proposed which outperforms the BNL algorithm for
skyline queries evaluation. The algorithm BNL+ for pareto
query evaluation has been introduced in [6]. In [16], the
authors proposed the algorithm BNL++ for pareto query
evaluation in a particular case, where the ordering over the
attribute domains is a weak order (a strict partial order with
negative transitivity). In [12] the problem of multiple prefer-
ence queries has been addressed, where different users may
compete for the same object simultaneously. The authors
proposed a Skyline-based algorithm to solve it.

6. CONCLUSION
In this paper we developed new algorithms using a prefer-
ence partition technique for evaluating cp-queries in linear
time with respect to number of tuples. The partition tech-
nique uses the concept of knowledge base where the direct
and indirect comparisons of tuples are already computed.
The new algorithms have been implemented following the on
top approach over PostgreSQL query processor. Our exper-
iments showed a considerable better performance and scal-
ability of new algorithms with respect to state-of-art algo-
rithms. We have also enhanced the syntax and semantics of
the preliminary CPrefSQL version [15] by considering more
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general preference rules.

We intend to follow three main directions of research in the
future, namely: (1) Optimization: design of index-based al-
gorithms for evaluating the cp-queries. (2) Experiments on
High Dimensionality : analyze the behavior of algorithms in
scenarios with high dimensionality. (3) Continuous Queries:
development of incremental algorithms to update the most
preferred tuples in applications dealing with data that evolve
rapidly in time such as sensor networks and financial data
analysis. In such applications, the queries are continuously
submitted to the system and must be efficiently evaluated in
real time. We are presently working on the latter direction
of research.

Acknowledgments. The authors thanks to Research Agencies

CNPq, CAPES and FAPEMIG for supporting this work. The

authors are grateful to Professor Sandra de Amo for excellent

advices.

7. REFERENCES
[1] R. Agrawal, A. Borgida, and H. Jagadish. Efficient

management of transitive relationships in large data and
knowledge bases. In Proc. of ACM SIGMOD Int. Conf. on
Management of Data, pages 253–262, 1989.

[2] T. Allen. Cp-nets: From theory to practice. In Algorithmic
Decision Theory, volume 9346 of Lecture Notes in
Computer Science, pages 555–560. Springer, 2015.
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APPENDIX

A. PROOFS
Proof of Lemma 1. Suppose by absurd that t �ϕ t′ and

there no exists a comparison b such that t �b t
′. Let f, f ′ be two

essential formulas over Γ such that f = Cϕ∧Q+
ϕ (Aϕ)∧g∧w and

f ′ = Cϕ∧Q−ϕ (Aϕ)∧g∧w′ and Att(w) ⊆Wϕ and Att(w′) ⊆Wϕ

and t |= f and t′ |= f ′. By definition, f �ϕ f ′. Let the set
W ′ = (Wϕ ∪{Aϕ}. Consider the comparison b : (f � f ′)[W ′], by
definition t �b t

′, which is a contradiction.

Proof of Theorem 2. In order to prove Theorem 2, we have
to prove:

1) If t �Γ t
′ then t �K∗Γ

t′;

2) If t �K∗Γ
t′ then t �Γ t

′.

(Part 1) By Theorem 1, t �Γ t′ if and only if t = t1 �ϕ1

... �ϕm tm+1 = t′. By definition, if t �K∗Γ
t′ then there exists

b ∈ K∗Γ such that t �b t
′. Thus, we must prove that if t1 �ϕ1

... �ϕm tm+1 then there exists b ∈ K∗Γ such that t �b t
′. By

Lemma 1, there exists comparisons bi : (f+
bi
� f−bi

)[Wbi ] such

that ti �bi ti+1 and f+
bi

= Cϕi ∧ Q
+
ϕi

(Aϕi ) ∧ gi ∧ wi and f−bi
=

Cϕi ∧ Q
−
ϕi

(Aϕi ) ∧ gi ∧ w′i for all i ∈ {1, ...,m}. Thus, we have

to show that there exists fi such that fi = f−bi
= f+

bi+1
for all

i ∈ {1, ...,m − 1}. Suppose by absurd that fi does not exist.

Consider B′ = Att(f−bi
) ∩ Att(f+

bi+1
). Let hi, h

′
i sub-formulas

of f−bi
such that Att(hi) = B′ and Att(h′i) = Att(f−bi

) − B′.

Let hi+1, h
′
i+1 sub-formulas of f+

bi+1
such that Att(hi+1) = B′

and Att(h′i+1) = Att(f+
bi+1

)−B′. As Att(hi) = Att(hi+1) and

ti |= hi and ti |= hi+1 then hi = hi+1. Consider f ′i = hi = hi+1

and fi = f ′i ∧ h′i ∧ h′i+1. We can see that fi = f−bi
and f = f+

bi+1

such that Cϕi ∧ Q
−
ϕi

(Aϕi ) ∧ gi = f ′i ∧ h′i and wi = h′i+1 and

Cϕi+1 ∧Q
+
ϕi+1

(Aϕi+1 )∧ gi+1 = f ′i ∧ h′i+1 and wi+1 = h′i. Thus,

fi = f−bi
= f+

bi+1
which is a contradiction.

(Part 2) Suppose by absurd that t �K∗Γ
t′ and t 6�Γ t′. If

t �K∗Γ
t′ then there exists b ∈ K∗Γ such that t �b t

′. By definition,

if t �b t
′ then there exists formulas f1, ..., fm+1 ∈ FΓ and cp-rules

ϕ1, ..., ϕm ∈ Γ such that f1 �ϕ1 ... �ϕm fm+1 and t |= f1 and
t′ |= fm+1. Therefore, there exists tuples t1, ..., tm+1 such that
ti, ti+1 |= fi and t = t1 and t′ = tm+1. Thus, t1 �ϕ1 ... �ϕm

tm+1 and t �Γ t
′ which is a contradiction.

Proof of Theorem 3. Suppose by absurd that t �K∗Γ
t′ and

t 6�KΓ
t′. This means there exists a comparison b′ ∈ K∗Γ such

that t �b′ t
′ and there no exists an essential comparison b ∈ KΓ

such that t �b t
′. If there is no a comparison more generic than

b′ then b′ ∈ KΓ which is a contradiction. If no, then there exists
another comparison b ∈ KΓ more generic than b′ which also is a
contradiction.
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