
A Big Data architecture for security data and its application to phishing
characterization

Pedro H. B. Las-Casas, Vinicius Santos Dias, Wagner Meira Jr. and Dorgival Guedes

Computer Science Department
Universidade Federal de Minas Gerais

{pedro.lascasas,viniciusvdias,meira,dorgival}@dcc.ufmg.br

Abstract—As the Internet grows, cybersecurity problems also
arise. Different types of malicious activities have been explored
by attackers. However, the existent defense mechanisms are
not able to completely end the malicious threats, perpetuating
this continuous arms race. The development of applications to
mitigate those threats presents some complicating factors such
as the growth in the amount of data, and the variety of data,
that can come from different sources. In this paper we present
an architecture built on top of Big Data frameworks that aims
to mitigate cybersecurity problems such as spam and phishing
and we show how it is being used to study spam and phishing
collected using a global honeynet.

Keywords-architecture, cybersecurity, spam, phishing,
hadoop, spark

I. INTRODUCTION

According to McAfee [1], the likely annual cost of

cybercrime to the global economy is more than $400 billion.

The cost of cybercrimes includes the damage to company

performance and to national economies caused by cyber-

attacks, and the effects of information theft. As reported by

McAfee, in 2013, this types of incidents include more than

40 million people in the US. One estimate puts the total at

more than 800 million individual records in 2013.
To face such attacks, we need to be able to identify and

characterize them. A complicating factor in this case is the

enormous increase in the volume of available data that has

happened in recent years. Almost 90% of data in the world

today were created in the last two years alone, and every day,

approximately 2.5 quintillion bytes of data are created [2].

Security issues become more critical due to factors such

as the large volumes and variety of data that may be

vulnerable, the diversity of data sources and formats, and

the velocity in which data are generated, typically following

a stream nature with a high volume. Enterprises usually

collect terabytes of security-relevant data, including network

traffic, and software application events, among others [3].

However, well established techniques, most of the time, are

not scalable and typically produce many false positives when

dealing with large amounts of data, degrading their efficacy.

To face these emerging problems, big data analytics has

attracted the interest of the security community.
The use of big data frameworks for security solutions

presents several benefits, such as the possibility of storing

and using large quantities of security data. Although an-

alyzing logs, network flows, and system events has been

used for several decades in security solutions, conventional

technologies are not adequate to be applied on such long-

term, large-scale volumes. In general, the traditional infras-

tructure keep the data only for a limited period. Besides that,

traditional techniques are inefficient when performing ana-

lytics and complex queries on large, unstructured datasets,

while big data platforms perform these operations efficiently.

However, so far solutions have been tailor-made, making

their experience hard to adapt to other contexts.

In this paper we present an architecture for cybersecurity

applications based on big data frameworks. Our architecture

has the capability of collecting data from different sources,

storing, combining, and processing them effectively. For

example, sources like pcap files and other logs from a

honeynet, data streams collected from black list sites and

security-related search streams from social networks like

Twitter, can all be stored in our system. Different algorithms,

possibly implemented in different programming environ-

ments, can then be used to process combine data from

different sources as needed.

To illustrate its use, we implemented an application to

process large volumes of spam traffic collected from all the

world. Our application collects data from honeypots located

in different countries and continents, and stores the messages

in mailboxes on top of HDFS. In that way, all security-

related data becomes available to applications using Hadoop

and Spark. The main contribution of the application is its

capability to identify phishing e-mails in a set of spam

messages. Using Natural Language Processing (NLP) and

Locality-Sensitive Hashing (LSH), to inspect the text present

in the messages we were able to detect different phishing

campaigns. Evaluating the performance of the application,

our experiments showed that our tool presents a speedup of

8.7 and 13.17 in a cluster with 9 machines using Hadoop

and Spark, respectively.

To describe our architecture and results, the remainder

of this paper is organized as follows: Section II presents

our architecture, and the results are presented in Section III.

After that, Section IV describes related works, and Section V

presents some conclusions and discusses future works.

2016 IEEE 2nd International Conference on Big Data Security on Cloud, IEEE International Conference on High Performance

and Smart Computing, IEEE International Conference on Intelligent Data and Security

978-1-5090-2403-2/16 $31.00 © 2016 IEEE

DOI 10.1109/BigDataSecurity-HPSC-IDS.2016.44

36

II. OUR ARCHITECTURE

We proposed an architecture for cybersecurity systems

and used it to implement a spam analysis application to

identify phishing campaigns. The architecture must satisfy

important properties when considering a general large-scale

application, that are: (i) scalability, the performance must

be scalable as input data grows; (ii) efficiency, since it

aims to deal with security threats, a major property is the

ability to analyze the data efficiently, being able to mitigate

the proposed problem as fast as possible; and (iii) uniform

programmability, in which the architecture must be able to

deal with multiple kinds of data types (e.g. structured text,

binary data, etc.) and from different sources. The architecture

is depicted in Figure 1. It is composed by five parts: (i) data
collection, (ii) storage, (iii) reader, (iv) processing and (v)
visualization.

Figure 1. Architecture of our suggested solution.

A. Data collection

The first step of our architecture is the collection of data.

The most important aspect of this step is to identify relevant

data sources. Due to the constant advances of techniques

used by attackers, it is increasingly necessary to use distinct

sources of data in order to mitigate cibersecurity threats.

For network security proposals, there are different possible

data sources such as the network traffic packets, honeypot

data, DNS information, NetFlow records, among others. Our

architecture considers that different situations may require

different data sources. In our example application, the goal

was to analyze spam traffic, so we used low interactive

honeypots installed around the world as data collectors. One

of the main advantages of using honeypots to study spam

is the direct interaction with the agent responsible for the

abuse, making it possible to capture important information

about it.

The honeypots used in this work emulate open proxies

and open mail relays, machines on the network that are

traditionally abused by spammers1. For each connection

received by the honeypot, we stored the full content of

each message, with original headers, as well as additional

1http://spammining.speed.dcc.ufmg.br

network information extracted at the time of the connection,

which were stored as extended headers for each message.

The collected messages are stored in mailboxes.

B. Storage

Considering the heterogeneity of data that can be used

by an application, it is important to have a storage strategy

that will maximize performance and facilitate the use of the

datasets. Every data source has different characteristics and

is produced in a different volume and velocity, thus this is

important to be considered in order to store them in the

best possible way. One of the most used data storage is

HDFS (Hadoop Distributed File System). It is a reliable

and scalable distributed file system that provides high per-

formance access to data. One important aspect of HDFS

is its fault tolerance, which is obtained through replication,

keeping multiple replicas of each data block in several

different nodes. Another important aspect is that it is directly

accessible from most Big Data processing frameworks.

C. Reader

Once the data is properly stored, we must enable the

processing tool to process the input data. To guarantee

scalability, HDFS is designed to allow parallel access to

large files, so that different processing elements can work

in parallel, reading from different parts of the file. The first

step for that is to partition the data in large (128 MB) blocks,

which may then be stored in multiple machines. If that

blocking pattern happens to break a logical record across

two blocks, the HDFS API must include enough information

about the file data type to reconstruct those records.

Partitioning the blocks into logical records is performed

by the Input Format associated with a file and the Record

Reader for it. The Input Format tasks are (i) validate the

input; (ii) split the input blocks and files into logical chunks;

and (iii) create a Record Reader implementation to be used

to create key/value. A Record Reader uses the data within the

boundaries created by the input split to generate key/value

pairs, that will be used by the mappers.

Hadoop environment offers several InputFormats, which

go from simple line-based to JSON files. Unfortunately,

some data frequently used in security analisys, like pcap

files and mailboxes, are not treated the the standard API. Pre-

processing such files to put them into a JSON schema, for

example, is often not a reasonable solution. As our tool aims

to process mailboxes, we implemented a new Input Format

and Record Reader to handle a complete e-mail as a record,

providing the correct interface for the processing tools. A

mailbox is a simple text file that stores e-mail messages. If

we used HDFS text file format to read them, however, we

would get independent lines, with no notion of their order

— messages would be completely scrambled. To avoid that,

our architecture includes an HDFS extension for mailboxes.

Our new Record Reader uses a regular expression to identify

37

the beginning of an e-mail, and follows standard mailbox

formatting rules to identify its header and the message

contents, building an object for each message. It even crosses

file block boundaries if necessary [4]. A similar procedure

may be applied to other important file types, such as pcap

and nfcap.

As we split a logical partition into records, our architec-

ture’s mail reader extracts information about the email, to be

used in the processing phase. That allows, for example, that

a Hadoop file be written to receive complete mail messages

as objects to be processed by its map and reduce operators.

D. Processing

Once we have a scalable environment to store all types of

data, from different sources, that may be of interest, we need

a tool to process and analyze terabytes in a scalable manner,

so we can achieve high performance. Recently, many differ-

ent processing environments have been proposed for such

tasks. In our current architecture, we use Hadoop and Spark,

with their direct extensions (e.g., like Hadoop’s pig and

hive, and Spark’s GraphX, Streaming and SparkSQL). Both

frameworks fit well with the operations required to analyze

spam traffic, presenting reasonable performance. Others may

be added when needed, since most big data frameworks

are designed to integrate with HDFS and YARN, original

Hadoop components.

Apache Hadoop is an open-source framework used for

large scale processing of datasets on clusters of commodity

hardware [5]. It is based on the MapReduce model, a

programming paradigm used to simplify the expression of

parallelism.With Hadoop, all data is treated as key-value

pairs (K,V). The programmer must define a Map function

that may transform each pair; the run-time system then

groups all pairs with a same key and feed them as a list to

a Reduce function, also provided by the programmer, which

may process the list as a unit. By design, all mappers and

reducers may execute independently, as soon as their inputs

become available.

Although Hadoop has been widely adopted by the security

community in many specific problems, it is not adequate

when the application cannot be directly expressed as map-

reduce tasks. To handle cases where that is the case, our

architecture also includes Spark, which has a more flexible

programming paradigm: instead of just map and reduce

functions, users have access to a large set of data operators

that may be applied to datasets in parallel [6]. Different from

Hadoop, which depends on HDFS as source and destination

of all map-reduce computation, Spark uses memory to store

intermediate results, so it has better performance when

executing iterative algorithms.

E. Visualizing results

Finally, after executing all operations, the application must

be able to present it in a human-friendly form. Different

visualization platforms may be added to the architecture

easily using HDFS as a data repository, or by integrating

them directly into the applications. Our analysis uses Python

libraries, but other tools can be easily added.

III. RESULTS

To illustrate the use of the architecture, we present tasks

that would be performed during the initial steps of an anal-

ysis of phishing using our collected spam data. Experiments

were conducted on a cluster of 10 machines, with one master

and 9 slaves, performing storage and processing functions.

Each scenario was executed five times, and averages are

shown, with bars indicating the standard deviation in each

case. Each machine has 4 CPUs, 8 GB of memory and

300 GB of disk.

A. Tuning: counting spams

Our first activity, to evaluate the scalability of the solution

under different configurations, is a simple task: message

count. More than the actual count, our goal was to validate

our HDFS extension for mailboxes and to understand how

elements like data replication in HDFS, the programming

environment and the number of compute nodes used affected

scalability, so we could find the best configuration for the

cluster. We used both Hadoop and Spark versions of the

count application, to assess the relative performance of

the frameworks. The Hadoop implementation follows the

organization of the classic word count application, using

mappers to read each message and to issue a tuple with a

fixed key and value 1 as output for each message. The reduce

function just adds the values in the list for the fixed key it

receives. The Spark implementation receives the mailboxes

as its input dataset; we just have to apply the count operator
on the dataset to get the answer. For these tests we used

messages collected from February 01 to February 28, 2014.

In that period, 93,891,539 messages were collected totalling

approximately 268 GB, for an average of 9.57 GB collected

per day.

Figure 2 shows the performance for the operation, using

Hadoop and Spark. It presents the execution time, in min-

utes, when varying the number of compute nodes. For both

frameworks, the experiment using fewer slaves (3) resulted

in the worst performance, taking ≈57 minutes to complete

for Hadoop, and ≈42 minutes for Spark. Increasing to 5

machines, the runtime falls to ≈36 minutes and ≈25, 1.57

and 1.68 times faster, for Hadoop and Spark, respectively.

Using 9 machines, Hadoop’s running time was ≈21 minutes,

2.74 faster than the 3-node scenario and Spark’s was ≈14

minutes (3.05 faster). Another interesting result is obtained

when compared to the sequential implementation. An effi-

cient sequential program takes about 180 minutes to process

all 268 GB of data, almost 8.7 and 13.17 times slower than

Hadoop and Spark with 9 nodes, respectively. In all cases we

see that both Hadoop and Spark scale well in our scenarios,

38

although Hadoop is always a little below optimum speedup

(which would be 9.0 in this case), and Spark a little above

that. In that case, the super linear speedup is due to Spark’s

better use of caching in multiple levels of the system. This

result shows the potential of the solution on scaling the

number of machines and their applicability to real data.

0

20

40

60

3 5 7 9

Number of Machines

E
xe

cu
tio

n
Ti

m
e

(m
in

ut
es

) Hadoop
Spark

Figure 2. Performance varying the number of compute nodes.

One important element in a large scale storage system

like HDFS is how it balances reliability and performance by

creating multiple copies of the data. The HDFS replication

factor can be configured by the user and this affects both

the reliability of storage as the reading speed. A factor of

1 means no replication (and therefore no reliability in the

case of a machine failure); a factor of 3 is the default

configuration. Figure 3 shows the impact of replication

for the scenario with 9 compute nodes. Clearly, a repli-

cation factor of 1 shows the worst performance for both

environments. This occurs because, as there is only one

replica of each block, when a node makes a reading request,

there is a greater probability that the same is not available

locally, leading to an overhead due to the necessary networks

transfer. To show that, Fig. 3 also indicates, at the top of

each bar, the number of non-local accesses (NL) incurred in

each case. Using replication, HDFS tries to satisfy a read

request with a block replica that is closer to the requesting

node, and we can see that with 2 copies the number of

no-local accesses already drops markedly, to the point that a

further increase in replication does not provide visible effects

in execution time. Users must consider, however, that the

system reliability is further improved with 3 copies of each

file block.

NL = 113.67

NL = 209.25 NL = 7.33

NL = 0.8

NL = 4

NL = 0.7

0

10

20

30

1 2 3

Replication Factor

E
xe

cu
tio

n
Ti

m
e

(m
in

ut
es

) Hadoop
Spark

Figure 3. Replication effects. NL = # Non-Local accesses, on average (of
a total of 2,151 blocks).

Hadoop divides data in file splits, that are read completely

by some mapper. The granularity it uses to define splits and

assign them to nodes is limited by the scheduler. On the

other hand, Spark sees the file as a direct mapping of a

distributed data structure that it can handle just as it is laid

across compute nodes. That difference in approach makes its

scheduling of computation more efficient in terms of data

location, causing very few non-local accesses, one of the

reasons for Spark’s better performance with more copies.

B. Counting spams per recipient

Counting messages is basically a direct access application,

since it just has to read data from storage once and count

the objects found. Another operation that makes a more

elaborate use of the architecture is to count the number of

spams that would be sent to each recipient in our data. In

that case, e-mails from the mailboxes must be read by the

Record Reader, grouped by the destination addresses in their

headers and then counted. That operation maps directly to

the Map-Reduce execution model in Hadoop, and can be

easily implemented by a reduceByKey operator in Spark.

One important element in both Hadoop and Spark is the

configuration of the system to make sure it makes the best

use of the parallelism in each execution. In Hadoop, the user

must set the number of Reducers it will use, which may be

chosen basically in terms of the number of machines that

will run them, considering each node may run one reducer

(or at most a few of them) per core. Spark, on the other hand,

may be configured with the number of partitions it must

divide the data into before processing, and that is related to

the total number of file blocks involved (although multiple

blocks can be grouped in a single partition, or a single

block may be split into multiple partitions). This experiment

intended to check how sensitive each framework was to their

configuration parameters.

Figure 4(a) shows the impact when varying the number

of reducers from 1 to 64, using Hadoop, and varying the

number of partitions from 541 to 10009 in Spark (prime

numbers are recommended). Hadoop clearly is very sensitive

to its configuration and execution times drop approximately

four times from one reducer to eight (close to the number

of machines) and then stay more or less stable. Spark, on

the other hand, is much more resistant to configuration

variations in this case and always outperforms Hadoop.

Comparing Hadoop and Spark, we observe that Spark

obtained better results in both operations. Although we find

Spark more efficient than Hadoop in these experiments,

we highlight the flexibility of our architecture in dealing

transparently with different processing environments. That

is useful if the user decides for example to use an existing

application already implemented with Hadoop.

C. Phishing identification

For our phishing application, the first step to identify

phishing campaigns is to differentiate phishing messages

39

0

50

100

150

1 2 4 8 16 32 64

Number of Reducers

E
xe

cu
tio

n
Ti

m
e

(m
in

ut
es

)

(a) Variation of the number of re-
ducers using Hadoop.

0

10

20

30

541 2153 5003 10009

Level of Parallelism

E
xe

cu
tio

n
Ti

m
e

(m
in

ut
es

)
(b) Spark’s level of parallelism.

Figure 4. Sensitivity of each framework to configuration parameters.

from other types of spam, since our dataset contains all

kinds of spam messages (but only spam messages, so there

is no concern here about false positives, a legitimate user

message being classified as spam). In general, phishing

attacks attempt to steal sensitive information of the victim,

such as passwords, credit card number, among others, trying

to convince the user that the message is legit. Therefore,

we implemented a method from the literature [7] to identify

messages attempting to steal user’s information. Our method

uses natural language processing techniques to identify key

features of each message to generates a score, enabling the

identification of a phishing message by its differentiated

scores. Those features are discussed as follows.

Direct message: The first feature of our method is to

verify if the message is a message addressed directly to one

person or if it is a generic message sent to more people.

Usually, direct messages, referring to the user by his/her

name, are used in phishing to try to make the message sound

more legitimate. Identifying this feature helps in the phishing

identification. Our approach to detect if the spam is a direct

message is to check if the message’s number of recipients

is equal to one.

Mention of money: One way often used by attackers

to convince users to reply their emails is to promise easy

money. Once the victim believes that the email is legit and

that exists the chance to get "free money", they usually

answer the message, sending their information. Considering

this characteristic, we analyze the whole content of the

message in order to identify any mention of money, trying to

find words such as "money", "cash", "dollar", among others,

and any money related symbol like "$", "R$", "CAD$", etc.

Sense of urgency: the phishing attacker tries to induce

the victim to answer the message as soon as possible. One

of the reasons is that, when a person is under pressure or

an urgent situation, it usually lacks the logical reasoning,

tending to make hasty decisions. Another reason is because

the sooner the user answers the message, the smaller will be

the probability of the message or his URL’s to be blacklisted.

This feature is identified in our tests if the content of the

spam presents any word with a sense of urgency. The set

of words to consider was created using some key words,

such as "urgent", "immediate", "desperate", etc., and their

hyponymy, identified using WordNet2.
Reply request: The last feature we identify in the mes-

sage is the presence of a reply request. If the phishing

attacker intends to obtain sensitive information from the

user, it will only happen if the user answers the message.

Thus, the attacker tries to convince the victim to reply

to the e-mail. Here, we also used a set of words created

using WordNet, based on key words like "reply", "response",

"answer", "contact", etc.
If the message presents three of the features described

above, we consider it as being a phishing message. Once we

analyze the whole set of spams, the next step is to detect the

phishing campaigns in the selected messages. This operation

is performed using a Locality-Sensitive Hashing (LSH)

algorithm [8]. It represents similarities between objects using

probability distributions over hash functions, where the hash

collisions capture the objects similarity. Similar objects are

considered to be in the same phishing campaign.
We implemented the operations described above using

Spark and performed the executions on top of the same

cluster as used in the first two experiments. In this case, we

used only spam with English content. The data was collected

using honeypots located in Australia, Brazil, Chile, Hong

Kong, Netherlands, Norway, United States and Uruguay,

from April 01 to June 30, 2015. The dataset is composed

by ≈19 million e-mails, totalling around 60 GB.
Our results highlighted 212 phishing campaigns, with a

total of 775,115 messages, representing ≈4% of the spam.

On average, each of those campaigns have 3,656 e-mails,

sent by 1.71 different IP address, present in 1.44 and 1.26

Autonomous System and Country Code, respectively. The

biggest campaign found presents more than 57 thousand

messages sent by only 2 different IP addresses from 2

distinct ASes. Figure 5 presents part of an example extracted

from that campaign. All other e-mails sampled from that

group are similar to this one. As can be seen, the attacker

tries to convince the victim that it is a legitimate message

from a bank, and tries to to induce the victim to access his

bank account to steal his information. Despite the message

appearing legitimate, we can see that the URL is not from the

bank in question, but a page created to deceive the victim.
In order to evaluate if our method was able to correctly

classify the messages into phishing campaigns, we evaluated

manually all campaigns generated. From the total of 212,

only 4 were incorrectly classified, an accuracy of 98.1%.

We are currently researching other rules that can be used to

widen the set of possible phishing campaigns that can be

identified by our system.

IV. RELATED WORKS

Several studies have proposed parallel and distributed

solutions for network security problems. Using Hadoop,

2http://wordnet.princeton.edu

40

Figure 5. Sample message from the largest phishing campaign identified.

for example, François et al., proposed a scalable solution

called BotCloud [9]. Regarding the spam detection prob-

lem, Caruana et al. evaluates the use of Hadoop to spam

filtering [10], showing the their approach is scalable and

efficient. Considering phishing, Marchal et al. [11] proposed
PhishStorm, an automated phishing detection system using

Storm. The system uses URL features in order to identify the

ones that can be considered as phishing. LARX is another

parallel and efficient anti-phishing solution [12]. It extracts

the URLs contained in the network trace and checks them

for phishing using Google Safe Browsing API.

Matatabi [13] presents a big data platform for cyber-threat

analysis that is aimed to create a more complete system that

allows the detection of complex security threats involving

multiple data sources and location of attackers. Even though

we implemented an application related to phishing and spam

problems, the proposed architecture can be used to build

applications to fight different cybersecurity problems.

V. CONCLUSION AND FUTURE WORK

The proliferation of data sources and data collecting

structures has lead to a large increase in the data available

for cyber-security experts. To process such large volumes of

data, scalable massive data processing solutions are needed.

In this paper we introduced an architecture that enables

the implementation of Big Data applications to be used in

the context of cybersecurity. As a case study, we developed

an application that aims to process spam traffic using HDFS,

Hadoop, Spark, and data collected from honeypots spread in

different locations of the world. We were able to demonstrate

the power of our application, from the implementation of

simple operations to be used in the analysis of spam traffic,

to more complex operations such as phishing detection.

Our experiments showed that our method can correctly

detect phishing campaigns, presenting an accuracy of 98.1%.

Regarding the performance of the application, we obtained

a speedup of 8.7 and 13.17, for Hadoop and Spark, re-

spectively, using 9 machines. We also note the importance

of replication in data locality and its consequent gain in

processing latency. So our architecture is effective to apply

massive processing strategies in real applications that are

sensitive to scalability. As future work, we intend to develop

new applications using different Big Data frameworks, such

as Storm.

ACKNOWLEDGMENTS

The dataset used was collected and made available to

us by CERT.br, part of NIC.br. This work was partially

supported by NIC.br, Fapemig, Capes, CNPq, and InWeb.

REFERENCES

[1] Center for Strategic and International Studies - McAfee, “Net
Losses: Estimating the Global Cost of Cybercrime Economic
impact of cybercrime II,” White paper, June 2014.

[2] Y. Yu, Y. Mu, and G. Ateniese, “Recent advances in security
and privacy in big data,” j-jucs, Mar 2015.

[3] A. A. Cardenas, P. K. Manadhata, and S. P. Rajan, “Big data
analytics for security,” IEEE Security & Privacy, 2013.

[4] P. H. B. Las-Casas, V. Santos Dias, R. Ferreira, W. Meira, and
D. Guedes, “A hadoop extension to process mail folders and
its application to a spam dataset,” in International Symposium
on Computer Architecture and High Performance Computing
Workshop (SBAC-PADW), Oct 2014, pp. 108–113.

[5] T. White, Hadoop: The Definitive Guide. O’Reilly Media,
Inc., 2012.

[6] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster computing with working sets,” in
HotCloud’10, Berkeley, CA, USA, 2010.

[7] S. Aggarwal, V. Kumar, and S. D. Sudarsan, “Identification
and detection of phishing emails using natural language
processing techniques,” in Proc. of the 7th Int’l Conference
on Security of Information and Networks. New York, USA:
ACM, 2014.

[8] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in
high dimensions via hashing,” in VLDB, vol. 99, 1999, pp.
518–529.

[9] J. Francois, S. Wang, W. Bronzi, R. State, and T. Engel,
“Botcloud: Detecting botnets using mapreduce,” in Informa-
tion Forensics and Security (WIFS), 2011 IEEE International
Workshop on, Nov 2011, pp. 1–6.

[10] G. Caruana, M. Li, and H. Qi, “Spamcloud: A mapreduce
based anti-spam architecture,” in Int’l Conference on Fuzzy
Systems and Knowledge Discovery, 2010.

[11] S. Marchal, J. Francois, R. State, and T. Engel, “Phishstorm:
Detecting phishing with streaming analytics,” in Network and
Service Management, IEEE Transactions on, Dec 2014.

[12] T. Li, F. Han, S. Ding, and Z. Chen, “Larx: Large-scale anti-
phishing by retrospective data-exploring based on a cloud
computing platform,” in ICCCN 2011, July 2011.

[13] H. Tazaki, K. Okada, Y. Sekiya, and Y. Kadobayashi,
“Matatabi: Multi-layer threat analysis platform with hadoop,”
in BADGERS, 2014.

41

