2014 IEEE 26th International Symposium on Computer Architecture and High Performance Computing Workshops

A hadoop extension to process mail folders and its
application to a spam dataset

Pedro H. B. Las-Casas
Computer Science Department
Federal University of Minas Gerais
pedro.lascasas @dcc.ufmg.br

Wagner Meira
Computer Science Department
Federal University of Minas Gerais
meira@dcc.ufmg.br

Abstract—Even as the web 2.0 grows, e-mail continues to be
one of the most used forms of communication in the Internet,
being responsible for the generation of huge amounts of data.
Spam traffic, for example, accounts for terabytes of data daily. It
becomes necessary to create tools that are able to process these
data efficiently, in large volumes, in order to understand their
characteristics. Although mail servers are able to receive and
store messages as they arrive, applying complex algorithms to a
large set of mailboxes, either for characterization, security reasons
or for data mining goals is challenging. Big data processing
environments such as Hadoop are useful for the analysis of large
data sets, although originally designed to handle text files in
general. In this paper we present a Hadoop extension used to
process and analyze large sets of e-mail, organized in mailboxes.
To evaluate it, we used gigabytes of real spam traffic data collected
around the world and we showed that our approach is efficient
to process large amounts of mail data.

I. INTRODUCTION

Even today, e-mail continues to be one of the most used
forms of communication in the Internet. Recent reports [1]
show that there is a daily amount of more than 43 billion
messages around the Internet, and of this total, about 29 billion,
or 66%, refer to the spam traffic. Although e-mails servers are
capable of receiving and storing messages as they arrive, due
to the large amount of data generated, it becomes difficult to
perform complex operations in those datasets effectively. Thus,
analyzing e-mail data, either for characterization, data mining
or for security issues is a challenge.

An important problem related to e-mail is the spread of
spam. Due to the huge amount of data generated, spam has
become extremely expensive, both from the point of view
of computational resources and the time spent to combat it.
Spam campaigns, usually coming in bursts, require high com-
putational demands for its fight. However, the infrastructure
used for the analysis and detection of spam is typically fragile
and not scalable. Therefore, the processing and analysis of
spam traffic data, aiming its combat, increasingly require high
performance computational power. Substantial efforts are made
to implement algorithms and tools to be used to detect spam,
but the vast majority of those studies are implemented in a
non scale order. Considering the raise in the amount of spam

978-1-4799-7014-8/14 $31.00 © 2014 IEEE
DOI 10.1109/SBAC-PADW.2014.25

Vinicius Santos Dias
Computer Science Department
Federal University of Minas Gerais
vvsdias @gmail.com

Renato Ferreira
Computer Science Department
Federal University of Minas Gerais
renato@dcc.ufmg.br

Dorgival Guedes

Computer Science Department

Federal University of Minas Gerais

108

dorgival @dcc.ufmg.br

traffic data daily, it becomes harder to use anti-spam tools in a
timely manner. Las-Casas et al., for example, deal with a huge
amount of data, reaching several terabytes [2]. Because of this,
using only one high performance computer is not feasible to
perform real time analysis without loss of information.

Therefore, the efficient handling of data from e-mail servers
requires parallel and distributed solutions. We propose in this
paper a tool to be used for processing email implemented
in parallel and scalable manner. This tool uses Hadoop to
efficiently process large sets of mailboxes. Hadoop [3], im-
plementing the programming model MapReduce [4], has the
goal of providing a simple yet powerful parallel and distributed
computing paradigm in a reliable, fault-tolerance manner. Our
tool implements a new format for reading files from Hadoop
(new InputFormat). As default, Hadoop reads a file line by line.
In this work, we modified the reading format, enabling it to
read each e-mail from mailboxes as a single entry. Finally, we
structured the Map and Reduce, where the actual processing
of e-mails will be performed.

Using a set of real spam traffic data collected worldwide,
our test showed a performance gain of up to 13.5 times through
the proposed Hadoop tool regarding the execution of sequential
experiments. We were also able to show that the replication
of input files enables a gain of performance, the variation
in the number of reduce tasks impact the performance and
that our tool is scalable since, as we increased the number
of execution nodes, the performance also increased. Thus,
through our results, we show that it is possible to implement
a Hadoop extension that efficiently process e-mail, helping its
characterization and, mainly, the fight against spam.

The methodology used in the development of our tool
is given in section II. Section III shows the experimental
evaluation and discuss the most important results. Section IV
summarizes related work. Conclusion and future work are
included in section V.

II. METHODOLOGY

MapReduce is a programming paradigm used to large
scale processing in a distributed and parallel manner. This

IEEE
computer
® psouety

programming model has as main features the operations
map and reduce. Programmers implement their own map
and reduce functions, while the system is responsible for
scheduling and synchronizing these tasks. Hadoop is an open-
source framework used to large scale processing of data-sets
on clusters of commodity hardware. Hadoop has two major
components: HDFS (Hadoop Distributed File Systems) and
Hadoop MapReduce. HDFS provides reliable and scalable data
storage [5], while Hadoop MapReduce is the implementation
of MapReduce programming model. The main advantages of
MapReduce and Hadoop are: (7) scalability - using commodity
hardware, the framework is able to be successfully deployed
on thousands of nodes [6]; (i¢) efficiency - this programming
model is very efficient for applications that require processing
the data only once (or only a few times); (ii¢) flexibility
- since programmers implement their own map and reduce
functions, there is considerable flexibility in specifying the
exact processing that is required over the data and (iv)
fault tolerance - Hadoop provides fault tolerance mechanisms
through both HDFS and MapReduce. HDFS provides fault
tolerance by replication, keeping multiple replicas of each data
block in several different nodes, while MapReduce provides
job level fault tolerance, that is, if a job fails, it would be re-
assigned to another node [7]. The disadvantage of MapReduce
is on its reduced functionality, since it is usable only for certain
types of applications (e.g., those that do not require iterative
computations). However, considering that our application aims
to process a set of e-mails in a directly manner, this model fits
correctly to our goal.

Under a logic perspective, on the MapReduce programming
model, all data is treated as a key-value pair (K, V). Count-
less mappers and reducers can be used for processing these
pairs. Initially a mapper receives a pair {Ki,Vi}, performs
operations on the pair, treating it as needed and then sends
it to a reducer. A reducer receives all the pairs that have the
same key and performs operations on these pairs, then sending
the final result. The execution of a reducer can not start while
the mappers processing its referred key are still working. All
functions map and reduce are performed independently and
in parallel. Figure 1 shows how the MapReduce architecture

works.

MapReduce Architecture.

(K1, V6)

Input data
Output data

Fig. 1.

A. RecordReader Implementation

Before beginning map and reduce operations, it is neces-
sary to perform some tasks. First of all, the input files need
to be added to HDFS. HDFS file system fragments the files

in blocks, typically 64 MB, which are used as the unit to
be processed by MapReduce tasks. Each block is stored in a
computing node, being replicated for fault tolerance, and then
divided into splits to be processed by a mapping task. Each
split is then partitioned into records, which are passed to a
mapper. Partitioning the blocks into logical splits and records
is performed by the InputFormat and the RecordReader that
compose it. The InputFormat jobs are (i) validate the input,
checking if the data is available; (i) split the input blocks
and files into logical chunks, each of which is assigned to
a map task for processing and (iii) create a RecordReader
implementation to be used to create key/value to be sent to the
mappers. A RecordReader uses the data within the boundaries
created by the input split to generate key/value pairs, that will
be used by the mappers. The default Hadoop RecordReader
consider a record of a split as a simple line, that is sent to a
map task.

As our tool aims to process mailboxes, it was necessary to
implement new InputFormat and RecordReader to consider a
record as being a single e-mail. A mailbox is a simple text file
that stores e-mail messages. The beginning of each message is
indicated by a line whose first five characters consist of From
followed by the sender’s e-mail address and the date/time of
the message. An example of a simple mailbox containing two
messages is showed in Figure 2. Our new RecordReader uses
a regular expression to represent the beginning of an e-mail.
A new record is identified when the line being read matches
the regular expression, and the end of the record occurs when
a line matches the beginning of a new e-mail or when it found
the end of the file (EOF). If a different type of mailbox, with
different format needs to processed, all we have to do is change
the regular expression used.

From author@example.com Sat Feb 103:50:48 2014

Received: from 229.96.106.193 by ; Sat, 01 Feb 2014 05:40:45 +0200
Message-ID: <author@example.com>

From: Author <author @example.com>

To: Recipient <recipient@example.com>

Subject: Message 1

Date: Sat, 01 Feb 2014 00:39:45 -0300

From author2@example.com Sat Feb 1 03:58:50 2014

Received: from 229.96.106.193 by ; Sat, 01 Feb 2014 05:42:34 +0200
Message-ID: <author2@example.com>

From: Author <author2 @example.com>

To: Recipient <recipient2@example.com>

Subject: Message 2

Date: Sat, 01 Feb 2014 00:42:35 -0300

Fig. 2. Mailbox example.

As stated earlier, the first step in the processing of each
block is to create a logical split and to divide it into records.
In an ideal world, a logical split would be the exactly the size
of the block and its division would be made splitting it into
equally sized parts, in a way that it begins at the beginning
of a line (or e-mail, in our case) and finishes in the end of a
line. However, other options exists and need to be considered
because, otherwise, it would be loss of information. Figure 3
shows the division possibilities for the blocks into logical splits
and records.

The first possibility, and most trivial one, is when a block
starts at the beginning of an e-mail and finishes at the end of

Block 1 Block 2 Block 3

0MB 64 MB 128 MB 192 MB

Mail 1 ‘ 32 MB

Mail 2 32 MB
Mail 3
Mail 4

Mail 5

Mail 6

Fig. 3. Record Reader.

another one. Block 1, in Figure 3, represents that case. Mail 1
and 2 fits exactly into the block. In that case, the logical split
would have the same size as the block. Another possibility
is showed by Block 2. In this example, the end of the block
happens at the middle of an e-mail. So, the first part of mail
4 will be read from Block 2 and second part will be read
remotely from Block 3. In that case, the logical split will start
at the same point as Block 2, but will end when mail 4 reaches
its end, at Block 3. Each mail from the logical split will be
considered as a record and sent as a key/value to a mapper.
The third case shows when a block starts at the middle of
an e-mail that have already been read. Block 3 represents that
case. As can be seen in Figure 3, this block starts at the middle
of mail 4. To solve that problem, we backtracked the reading
in order to find the beginning of that mail, at Block 2, and
restarted the reading process, ignoring the first e-mail (mail 4,
in that case). For this example, the logical split would initiate
at the beginning of mail 4. However, the records to be sent to
a mapper starts at mail 5. Block 3 also shows the case when
the end of the file is reached before the end of the block. That
means that the logical split would end at EOF, been smaller
than the block.

When splitting the logical split into records, our Recor-
dReader extracts each information about the e-mail, such as the
sender of the message, IP address of the sender, the recipients
to where message is being sent, data and time, subject and
content of the mail, among others. All these features compose
a Mail object that were created to represent the messages and
to be sent to the mappers as a key.

After splitting the blocks, creating the Mail objects and
sending it to the mapper, the next step is to implement the
map and reduce tasks. The implementations of map and reduce
tasks are in charge of the developer using our tool and depend
on the assignment that wants to perform on the input data. In
the next section, we show two different implementations for
the map and reduce tasks, used to evaluate our tool.

III. EXPERIMENTAL RESULTS

In this section we describe different experiments performed
to evaluate the performance of our tool. For the experiments,
we used a small Hadoop test bed consisting of a master node
and four data nodes. Each node has quad-core CPU, 4 GB
memory, and 80 GB hard disk. HDFS is used for the cluster
filesystem. We first explain the dataset used in our tests. Then,
we explain an application used to count the number of e-mails

110

in a mailbox and to count the number of messages intended
for the recipients.

A. Dataset

As input for the evaluation of our tool, we used spam
traffic collected by honeypots around the world. Data were
collected using a set of sensors that implement low-interaction
honeypots. Honeypots are computing resources used to collect,
analyze, block or deflect attacks and/or abuse from the network
aiming a service or system. The honeypot offers a service,
which appears to be legitimate, to thereby attract the targets
and be abused and/or attacked by them, and then, record their
activity. Low-interaction honeypots only emulate the services
to be abused, not being real implementations. The honeypots
used in this work emulate open proxies and open mail relays,
machines on the network that are traditionally abused by
spammers.

In our project !, we have 13 honeypots deployed in 11
different countries. However, due to space limitations in our
cluster, we used data collected only by the honeypot TW-
01, located in Taiwan. For each connection received by the
honeypot, information such as the source IP address, destina-
tion IP address (in case of HTTP and SOCKS proxies), the
TCP port abused in the honeypot, the protocol used (SMTP,
HTTP or SOCKS) and the date/time of the connection are
recorded. Other information collected also include the probable
operating system associated with each source. For each source
and destination IP addresses, the Autonomous System (AS),
network prefix and related Country Code (CC) were also
recorded at the collection time. Finally, the system stores the
headers and full content of each message.

The collection of spam stored by honeypots is done at
regular periods by a central server. The collection mechanism
was implemented using remote copy and synchronization
program rsync through an encrypted SSH tunnel. Messages
collected by this server are stored in mailboxes. The mailboxes
are organized by honeypot, per day and for each IP address.
Having made the collection of spam messages in different
mailboxes, the next step is to concatenate these files to store
them in HDFS. For this, we generated a script that runs each
directory and concatenates the mailboxes to a single file that
contains all the spam messages captured for each day. After
running this script, the generated file is then added to HDFS.

As said before, we used data collected from the honeypot
deployed in Taiwan. The considered period was from February
01, 2014 to February 07, 2014. Table III-A shows more details
about our datasets.

[Dataset | Period
[T-week | Feb, 01 - Feb, 07 | 9.92 Gb

[Avg. Size/Day [Total Size | # of Messages |
[605Gb | 24150736 |

B. Counting the e-mails

To evaluate the performance of the proposed Hadoop
extension, we first implemented a simple program to count
the e-mails in a mailbox. In this implementation, the mappers
receive each e-mail in the mailbox by the RecordReader. After
receiving it, all mappers create a key/value pair with a single

Uhttp://http://spammining.speed.dcc.ufmg.br

key and the value equal to 1. After that, the pairs are sent
to a reducer, that process and count them. Figure 4 shows
a schema of the application. In order to compare with the
Hadoop execution, we also implemented a sequential program
to count the total messages in a mailbox. This program was im-
plemented using Python and performs the exactly same thing
as the Hadoop program. For all experiments, we performed
10 different executions and calculated the confidence interval
with a confidence level of 95%.

Input Output
Mail 1
Mail 2 Mapper 1 -
=
i ———
Mail 3 n
- [}
Mail 4 % E
Mapper 2
Mail5 L —— PP $
’ (Key, 1) f_’
Mail 6 (Key, 1) Reducer 1 o)
— (Key. 1) - 5
il — Mapper 3 3
Mail 8 g
(Key. 1)
Mail 9 (Key, 1) =
(Key, 1)
Mail 10 Mapper 4 (Key, 1)
Mail 11

Fig. 4. Message Count.

Figure 5 shows the execution time, in seconds, for each
number of nodes used to run the application and the sequential
implementation. From these curves, we can observe that the
application scales properly as the number of nodes used grows.
Using only one DataNode results in a poor performance,
requiring more than an hour to finish the processing. Increasing
to 2 DataNodes, we already see a big improvement. In that
case, the execution time is around 16.6 minutes, with a speedup
when comparing to the 1 node execution of 3.9. The use of
3 and 4 nodes also improve the performance. The 3 nodes
execution spent 14.5 minutes, obtaining a 1.15 speedup, when
comparing to the 2 nodes execution. Using 4 nodes results in an
execution time of 8.8 minutes, which means that the speedup
is 1.65 if we compare to the 3 nodes execution. Another
interesting result is obtained when we compare our tool with
the sequential implementation, using Python. The sequential
implementation expends around 119 minutes to perform the
processing of all data. If we compare with the best performance
of our tool (using 4 nodes) the speedup is 13.5. Those results
show that our application scales as we increase the number of
nodes used for data processing.

As stated earlier, HDFS is used to store our data. This
filesystem allows replication, which factor is configurable.
Because of replication, HDFS tries to satisfy a read request
from a replica that is closest to the reader node, in order
to minimize bandwidth consumption and read latency. For
example, if there exists a replica on the same rack as the reader
node, that replica will be used by that node. In order to evaluate
the impact of the replication factor in our application, we
performed experiments varying the number of replicas used.
In that experiment, it was used the 1-week dataset, and we
varied replication factor from 1 to 4.

Figure 6 shows that using replication factor equal to 1
presents the worse performance. That happens because, since
there is only 1 replica of each block, when a reader node
needs a block, there is a considerable probability that this block

111

70

50 1

40]

30 1

Elapsed time (minutes)

20 1

10 1

1 2 3 4
Number of nodes

Fig. 5. Performance when varying number of nodes.

will not be local, so the node will have to request the block
from another node, creating an overhead caused by bandwidth
consumption and read latency. The execution considering 2,
3 and 4 replicas did not present difference among them. The
major reason for this is because the cluster used in our tests is
small, composed by only 4 machines, so, even with 2 replicas
of each block, the amount of requisition for remote blocks
does not impact in the overall performance of the application.

8.9

8.85 4

8.8 J

8.75 1

8.7 1

Elapsed time (minutes)

8.65 4

8.6 1

8.55

1 2 3 4

Replication factor

Fig. 6. Replication effects.

C. Counting e-mails by recipients

The other experiment performed aimed to count the number
of messages that would be sent to each recipient. Figure 7
shows how the flow would work for this application. In that
case, the e-mails from the mailboxes would be read by the
RecordReader and sent to the map tasks. It is noteworthy that
when reading the e-mails, the RecordReader generates an array
containing all recipients of the message. So, the mapper will
read this array and, for each recipient, will create a key/value
pair, where the recipient is the key and will send it to a reducer.

Same recipients were sent to the same reducer. At the reduce
task, we iterated at the list of recipients received, counting the
number of e-mails for each of them.

Input Output
Mail 1 (1@a.com, 1)
1@a.com 2@a.com, 1) (1@a.com, 2)
2@a.com Mapper 1 (2@a.com, 3)
— (2@a.com, 1 Reducer 1 1@a.com = 2
2@a.com T -
3@a.com Mapper 1 {1@a.com, 1) 2@a.com =3
(2@a.com, 1)
Mail 3 3@a.com=3

1@a.com
2@acom
3@a.com

3@a.com, 1) (3@a.com, 3)

(4@a.com, 1)

Mapper 3
Mapper 4

Recipient Count.

4@a.com=1
Reducer 2

Mail 5
3@acom
4@acom

(3@a.com, 1)
(4@a.com, 1)

Fig. 7.

In the first application, used to count the number of
messages, it was necessary only one reducer, since there were
only one type of key. However, in this second application,
it is required to use more reducers, since there are a huge
amount of different types of keys. Thus, to analyze the impact
of the number of reducers in the overall performance of the
application, we performed experiments varying the number of
reducers used. For each experiment, we performed 30 exe-
cutions. The confidence interval considers a 95% confidence
level.

Figure 8 shows the impact of varying the number of reduc-
ers. As can be seen, all experiments showed a great variation,
showed by the high confidence interval. This is due to the fact
that the application generates a large amount of intermediate
data, that is written in the hard disk and also need to be
read. Those tasks have great variation in performance, which
impacted in the executions of our experiments. Considering
the average time, the use of 12 reducers presented the best
results, spending around 19 minutes. The use of 8 reducers
resulted in the worst performance, with an execution time of
more than 22 minutes.

225 t
22 +
215
21 +
205 ¢

20

Elapsed time (minutes)

195 +
19
18.5 +

18

4 6 8 10 12

Number of reduces

Fig. 8. Variation of the reducer.

112

IV. RELATED WORK

E-mail, one of the oldest Internet application, continues to
be very popular, even as the web 2.0 grows. Recent reports [1]
show that over 43 billion emails traffic the Internet daily.
Considering that emails have an average size of around 8 Kb,
as stated by Bertolotti et al. [8], every day is generated around
300 terabytes of email data. Lee and Kim show that the
interarrival time of SMTP 2 is, on average, 0.26 seconds [9].
Due to the huge amount of data and the small time between
the arrival of messages, it is very important to create an
efficient and scalable environment to be used in the analysis,
characterization and application of complex algorithms on
large sets of e-mails.

Under the spam traffic perspective, several works depicts
the spam scenario. Gomes et al. analyzed an e-mail workload
consisting of the messages received in a university network,
pointing out a number of features that can be used to differenti-
ate spam from legitimate messages [10]. In an extension of that
work, the authors concluded that legitimate traffic tends to have
lower entropy than the traffic generated by spammers, who
usually send e-mails indiscriminately to all their targets [11].
Kim et al. showed that the interval between arrivals of spam
is below the range of legitimate emails (less than 5 seconds in
95% of cases) [12]. Las-Casas et al. give an overview of spam
traffic collected in 8 distinct points around the globe [2]. Using
a dataset composed by almost 2 billion messages and 7 TB,
they showed characteristics related to protocol used to send
the spam message, the behavior of the traffic over the time
and the influence of spam campaigns in the traffic observer by
the machines collecting the data.

Despite all efforts made to analyze e-mail workloads as
well as to study, characterize and combat spam, as showed
in those works before, due to the large amount of data and
to the need to timely manner responses, specially in the case
of spam combat, it is more and more necessary to have an
efficient mechanism to process the collected data. Shu et al.,
for example, present a framework for security log analysis that
allows analysis of a massive number of system, network, and
transaction logs efficiently and scalably, using a distributed and
parallel environment [13]. Francois et al. use MapReduce and
Hadoop for detecting botnets using real network traces from
an Internet operator [14]. Indyk et al. proposed a collective
classification method using MapReduce for web spam detec-
tion [15] and Caruana et al. presented an anti-spam architecture
that also uses Hadoop and MapReduce [16]. Extending their
work, the authors implemented SVM on MapReduce for large
scale spam filtering [17]. In this work, we propose an extension
for Hadoop that enables the analysis of mail folders and can
be used both for characterization of mail workloads and as a
tool to analyze the spam traffic, helping to combat it.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a Hadoop extension used to pro-
cess mail folders. The extension of the file formats supported
by the Hadoop File System provides an important funcionality,
in this era of Big Data: direct access for hadoop programmers
to large mail datasets, often available in the form of user
mailboxes, or other mailbox-organized collections, like the

2Simple Mail Transfer Protocol

spam data used in our work. Our preliminary results show that
the extension is effective in making a new set of applications
possible in Hadoop (previous solutions to handle mail in the
system were often too complex or slow to consider). Although
performance can still be improved, our preliminary results
indicate there is still room for that.

As future work we intend to continue to work on improving
the system performance for that kind of applications, and to
apply the framework in a more detailed analysis of the spam
corpus available to us.

ACKNOWLEDGMENT

The dataset used was collected and made available to us
by Cristine Hoepers, Klaus Steding-Jessen and Marcelo H.P.
Chaves, from CERT.br, part of NIC.br.

This work was partially sponsored by NIC.br, Fapemig,
Capes, CNPq, and the National Institute of Science a Tech-
nology of the Web, InWeb (MCT/CNPq 573871/2008-6).

REFERENCES

[1] Symantec, “Internet Security Threat Report, Volume 19,” Online, April

2014.

P. H. B. Las-Casas, D. Guedes, W. M. Jr., C. Hoepers, K. Steding-
Jessen, M. H. P. Chaves, O. Fonseca, E. Fazzion, and R. E. A. Moreira,
“Analise do trafego de spam coletado ao redor do mundo,” in Brazilian
Symposium on Computer Networks and Distributed Systems (SBRC) (In
Portuguese). SBC, 2013.

T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly Media, Inc.,
2009.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, Jan. 2008.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST), ser.
MSST ’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 1-10.

K. V. Shvachko, “Apache hadoop: The scalability update,” login: The
Magazine of USENIX, vol. 36, pp. 7-13, 2011.

F. Li, B. C. Ooi, M. T. Ozsu, and S. Wu, “Distributed data management
using mapreduce,” ACM Comput. Surv., vol. 46, no. 3, pp. 31:1-31:42,
Jan. 2014.

L. Bertolotti and M. Calzarossa, “Workload characterization of mail
servers,” Proceedings of the 2000 Symposium on Performance Evalua-
tion of Computer and Telecommunication Systems, 2000.

Y. Lee and J.-S. Kim, “Characterization of Large-Scale SMTP Traffic:
the Coexistence of the Poisson Process and Self-Similarity,” Sep. 2008,
pp. 1-10.

L. H. Gomes, C. Cazita, J. M. Almeida, V. Almeida, and W. M. Jr.,
“Workload Models of Spam and Legitimate E-mails,” Performance
Evaluation, vol. 64, no. 7-8, pp. 690-714, August 2007.

L. H. Gomes, V. Almeida, J. M. Almeida, F. Castro, and L. Bettencourt,
“Quantifying Social And Opportunistic Behavior In Email Networks,”
Advances in Complex Systems, vol. 12, no. 1, pp. 99-112, January 2009.
J. Kim and H. Choi, “Spam Traffic Characterization,” in Int’l Techni-
cal Conference on Circuits/Systems, Computers and Communications,
Shimonoseki City, Japan, 2008.

X. Shu, J. Smiy, D. Daphne Yao, and H. Lin, “Massive distributed
and parallel log analysis for organizational security,” in Globecom
Workshops (GC Wkshps), 2013 IEEE. 1EEE, 2013, pp. 194-199.

J. Francois, S. Wang, W. Bronzi, R. State, and T. Engel, “Botcloud:
Detecting botnets using mapreduce,” in Proceedings of the 2011 IEEE
International Workshop on Information Forensics and Security, ser.
WIFS ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 1-6.

[2]

[31

[4]

[10]

[11]

[12]

[13]

[14]

113

[15]

[16]

[17]

W. Indyk, T. Kajdanowicz, P. Kazienko, and S. Plamowski, “Web
spam detection using mapreduce approach to collective classification.”
in CISIS/ICEUTE/SOCO Special Sessions, ser. Advances in Intelligent
Systems and Computing, vol. 189. Springer, 2012, pp. 197-206.

G. Caruana, M. Li, and H. Qi, “SpamCloud: A MapReduce based anti-
spam architecture,” in 2010 Seventh International Conference on Fuzzy
Systems and Knowledge Discovery, vol. 6. IEEE, Aug. 2010, pp.
3003-3006.

G. Caruana, M. Li, and M. Qi, “A MapReduce based parallel SVM for
large scale spam filtering,” in Fuzzy Systems and Knowledge Discovery
(FSKD), 2011 Eighth International Conference on, vol. 4, Jul. 2011,
pp. 2659-2662.

