
Journal of Parallel and Distributed Computing 191 (2024) 104903

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

DuMato: An efficient warp-centric subgraph enumeration system for GPU

Samuel Ferraz a,b,∗, Vinicius Dias c, Carlos H.C. Teixeira a, Srinivasan Parthasarathy d,
George Teodoro a, Wagner Meira Jr. a

a Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
b Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
c Federal University of Lavras (UFLA), Lavras, MG, Brazil
d The Ohio State University (OSU), Columbus, OH, USA

A R T I C L E I N F O A B S T R A C T

Keywords:

Graph pattern mining
GPU
Irregular processing
Load-balancing
Enumeration paradigms

Subgraph enumeration is a heavy-computing procedure that lies at the core of Graph Pattern Mining (GPM)
algorithms, whose goal is to extract subgraphs from larger graphs according to a given property. Scaling
GPM algorithms for GPUs is challenging due to irregularity, high memory demand, and non-trivial choice of
enumeration paradigms. In this work we propose a depth-first-search subgraph exploration strategy (DFS-wide)
to improve the memory locality and access patterns across different enumeration paradigms. We design a warp-
centric workflow to the problem that reduces divergences and ensures that accesses to graph data are coalesced.
A weight-based dynamic workload redistribution is also proposed to mitigate load imbalance. We put together
these strategies in a system called DuMato, allowing efficient implementations of several GPM algorithms via
a common set of GPU primitives. Our experiments show that DuMato’s optimizations are effective and that it
enables exploring larger subgraphs when compared to state-of-the-art systems.
1. Introduction

The goal of Graph Pattern Mining (GPM) is to discover subgraphs
that meet a set of criteria. For example, clique listing is a GPM task aim-
ing to visit all subgraphs that represent a clique pattern with 𝑘 > 2 ver-
tices in a graph, and can be used to detect communities in graphs [36].
GPM algorithms are used in areas such as biology [43], social network
analysis [15], among others. Given an input graph 𝐺, GPM algorithms
enumerate subgraphs of 𝐺 that match a given property. This property
can be topological (e.g., clique, chordal, etc.) or statistical (e.g., pattern
frequency [4]). GPM algorithms rely on a procedure called subgraph enu-

meration, which recursively combines subgraphs with their adjacency
lists to produce larger subgraphs up to 𝑘 vertices of an input graph.

Fig. 1 depicts one step of subgraph enumeration (extend) using a
subgraph 𝑠 ← {1, 2} of an input graph. The adjacency lists of 𝑠 are vis-
ited to generate a set of 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑠, which correspond to vertices/edges
that can be used to extend 𝑠 and generate new subgraphs satisfying
the given property. The same procedure is applied recursively for each
extended subgraph. As such, subgraph enumeration deals with a combi-
natorial explosion in the number of subgraphs as the size of the visited
subgraphs increases, which leads to long execution times and motivates

* Corresponding author.

the use of parallelism. For example, the small biological dataset bio-

diseasome [41] containing 516 vertices and 1.2 K edges, around 4 TB
of memory is required to store all induced subgraphs with ten vertices
(assuming a 4-byte integer per vertex to store each subgraph).

Subgraph enumeration systems were proposed for CPU [13,27,45,
37,47] and GPU [9,7,48,21], offering a good tradeoff between pro-
grammability and performance. These systems are supposed to provide
an easy-to-use high-level framework that allows efficient implementa-
tions of different GPM algorithms within the same software environ-
ment. In order to use GPUs as a target platform and take full advantage
of its massive parallelism, they try to mitigate the critical challenges in
using GPU in the domain: irregularity, combinatorial explosion and enu-

meration paradigm.
Irregularity occurs due to the unpredictable cost for enumerating

different subgraphs, which results from different sizes of adjacency
lists of vertices in those subgraphs. The first consequence of irregu-
larity is thread divergence when threads in a warp process different
subgraphs. Second, there is also the lack of memory coalescence since
parallel threads often need to access different adjacency lists. Third,
is the inherent load imbalance in such computations. Since the pro-
cessing costs of subgraphs (e.g. accessing adjacency lists) are not the
Available online 22 April 2024
0743-7315/© 2024 Elsevier Inc. All rights reserved.

E-mail addresses: samuel.ferraz@ufms.br, samuelbferraz@gmail.com (S. Ferraz).

https://doi.org/10.1016/j.jpdc.2024.104903
Received 30 June 2023; Received in revised form 13 December 2023; Accepted 11 A
pril 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
mailto:samuel.ferraz@ufms.br
mailto:samuelbferraz@gmail.com
https://doi.org/10.1016/j.jpdc.2024.104903
https://doi.org/10.1016/j.jpdc.2024.104903
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2024.104903&domain=pdf

S. Ferraz, V. Dias, C.H.C. Teixeira et al.

Fig. 1. One step of subgraph enumeration.

same, so are the subgraph enumeration loads assigned to particular
threads.

Combinatorial Explosion happens due to the number of subgraphs
that may be visited when the subgraph size 𝑘 increases. The graph
visitation strategy used directly impacts memory access patterns and
parallelism. Breadth-First Search (BFS) and Depth-First Search (DFS)
are the de-facto approaches to traverse graphs. BFS accesses the en-
tire adjacency list of a subgraph, leading to coalesced memory access.
However, it materializes all subgraphs throughout the enumeration, and
consequently, the amount of memory required quickly grows with the
subgraph size. This limits its use to visit small subgraph sizes [9,45].
The DFS reduces the memory demand and keeps a small portion of
states during the enumeration. However, its irregular and strided mem-
ory requests may severely affect the GPU performance.

The Enumeration Paradigm (pattern-oblivious or pattern-aware) guides
how subgraphs are visited during enumeration. The pattern-aware
paradigm requires a target pattern as input to create a custom explo-
ration plan [3,23] and visits only subgraphs matching that pattern,
eliminating the need for graph isomorphism in the enumeration. Cus-
tom exploration plans reduce the number of intermediate states and the
computational cost of enumeration but increase the complexity of using
this paradigm for arbitrary patterns. The pattern-oblivious paradigm vis-
its all subgraphs of a specific size regardless of pattern structure, thus
eliminating the need of custom tuned exploration plans and recurrent
visitations over the same input graph. As it visits all subgraphs, it has
a higher computational cost than the pattern-aware paradigm for a sin-
gle pattern. As the size of the enumerated subgraphs and the amount of
patterns increase, the tradeoff between using these paradigms is non-
trivial to quantify. Therefore, we argue that supporting both paradigms
is an important feature.

This paper presents a GPM system called DuMato, which proposes
execution strategies and optimizations to mitigate the challenges for
efficient subgraph enumeration on GPUs. DuMato allows the efficient
implementation of different GPM algorithms using a high-level API
that supports both enumeration paradigms (pattern-aware and pattern-
oblivious). DuMato addresses the irregularity with a subgraph explo-
ration strategy that reduces memory requirements compared to BFS,
enables better memory access coalescency and parallelism opportuni-
ties than DFS, and provides opportunities of data reuse throughout the
enumeration. We also developed novel load-balancing strategies that
improve the GPU utilization with low overhead and, consequently, the
overall performance of the GPM algorithms developed in DuMato. This
paper extends our previous work [18] with a detailed description of the
solution and a more detailed related work; a redesign in the execution
workflow with general-purpose core primitives to allow a new opti-
mization that integrates the compaction phase of the DuMato with the
filter phase; a novel load-balancing strategy; the inclusion of another
GPM application (subgraph matching); the support for both enumera-
tion paradigms (pattern-aware and pattern-oblivious). The experiments
have also been carried out in more detail, including a new optimiza-
tion formulation and an ablation analysis that studies the effect of
parameters on performance. The main contributions of the work are
2

summarized as follows:
Journal of Parallel and Distributed Computing 191 (2024) 104903

• We propose the DFS-wide traversal strategy targeting GPU systems to
reduce the memory demand and improve regularity. DFS-wide al-
ternates between BFS and DFS to provide opportunities for memory
coalescence with reduced memory demand. The DFS-wide model-
ing has a predictable affordable memory consumption and allows
the reuse of intermediate states throughout the enumeration. Du-
Mato enumeration phases have been modeled as warp-centric steps

to minimize divergence. All phases were proposed based on only
three core primitives, allowing a simplification in the execution
workflow that improves the overall performance and simplifies
the API. Our novel warp-centric design, along with the DFS-wide
traversal strategy, achieved an average speedup of 67× vs DFS.

• We developed a low-overhead warp-level load-balancing strategy
that uses the CPU to monitor and migrate load among GPU thread
warps. We extended our previous load-balancing to propose a new
strategy that uses the weight of each warp to redistribute workload
better, and several jobs are allocated to warps to increase GPU’s
occupancy. We evaluated the load-balancing layer and the perfor-
mance impacts when varying the parameters of the algorithm. This
strategy leads to an average speedup of 19× vs the warp-centric
design without load balancing and improves our previous load-
balancing algorithm [18] by an average speedup of 1.40×.

• Underpinning the above efforts, we present a novel GPM runtime
system called DuMato, targeting GPUs. DuMato proposes a general-
purpose execution modeling and workflow for GPM on GPUs, and
is the first subgraph enumeration system to support both enumer-
ation paradigms (pattern-oblivious and pattern-aware). DuMato is
typically an order of magnitude faster and has been able to mine
larger subgraphs than other systems.

We have made our system publicly available through the following link:
https://github .com /samuelbferraz /DuMato.

2. Background

This section introduces definitions used to represent GPM algo-
rithms. Let 𝑉 (𝐺) and 𝐸(𝐺) be, respectively, vertices and edges of a
graph 𝐺. Without loss of generality, assume undirected graphs without
labels. A traversal (Definition 2) represents an order that the vertices
of a subgraph are visited. The subgraph enumeration is a combinato-
rial procedure that generates new subgraphs by visiting neighborhoods

(Definition 1).

Definition 1. Given a subgraph 𝑆 of a graph 𝐺, the neighborhood of
𝑆 is the set of vertices 𝑁(𝑆) such that, given any vertex 𝑣𝑖 in 𝑉 (𝐺),
𝑣𝑖 belongs to 𝑁(𝑆) iff 𝑣𝑖 is not in 𝑉 (𝑆) and is adjacent to at least one
vertex in 𝑉 (𝑆).

Definition 2. A traversal over a graph 𝐺 is a list of its vertices, denoted
as 𝑡𝑟, and for any two values 𝑡𝑟[𝑖] and 𝑡𝑟[𝑗] where 𝑖 < 𝑗, 𝑡𝑟[𝑖] was visited
before 𝑡𝑟[𝑗] in the traversal.

Subgraph enumeration may visit distinct subgraphs with the same
properties, and we say there is an isomorphism (Definition 3) between
them. Two different traversals may visit the same subgraph 𝑆 in differ-
ent orders, and we say there is an automorphism (Definition 3) between
them.

Definition 3. An isomorphism is a function that maps vertices of two
graphs, G and H, in a one-to-one correspondence. It is called an isomor-
phism if for every edge between vertices in G, there is a corresponding
edge between vertices in H. If the isomorphism between two graphs 𝐺
and 𝐻 is such that the vertices of G and H are the same, then it is called

an automorphism.

https://github.com/samuelbferraz/DuMato

S. Ferraz, V. Dias, C.H.C. Teixeira et al.

Given a graph 𝐺 and a subgraph 𝑆 of 𝐺, one may reach 𝑆 through
different traversals. The only traversal allowed to visit a subgraph 𝑆
in a graph 𝐺 is known as the canonical candidate. Algorithms that
filter canonical candidates are essential to avoid redundant computa-
tion throughout enumeration. To categorize subgraphs, GPM algorithms
usually convert canonical candidates to a unique representation in a
procedure known as canonical relabeling.

The subgraph enumeration procedure receives a graph 𝐺, a starting
traversal 𝑡𝑟, the target size 𝑘 of the enumerated subgraphs, a property
function 𝑃 used during enumeration to keep only the traversals match-
ing the desired property, and an output function 𝐴 that produces results
of the algorithm (e.g., a counter). One should provide specific 𝑃 and 𝐴
functions to implement a GPM algorithm.

Algorithm 1: Pattern-oblivious and pattern-aware paradigms.

1 𝑣𝑜𝑖𝑑 𝑃𝑂(𝐺, 𝑡𝑟, 𝑘, 𝑃 , 𝐴):
2 𝐢𝐟 (|𝑡𝑟| == 𝑘):
3 𝐴(𝑡𝑟);
4 𝐫𝐞𝐭𝐮𝐫𝐧;
5 𝑁 ′ ←𝑁(𝑡𝑟);
6 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ∈𝑁 ′):
7 𝑡𝑟′ ← 𝑡𝑟.𝑎𝑝𝑝𝑒𝑛𝑑(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒);
8 𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙← 𝑖𝑠𝐶𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙(𝑡𝑟′);
9 𝑚𝑎𝑡𝑐ℎ ← 𝑃 (𝑡𝑟′);

10 𝐢𝐟 (𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙 𝐚𝐧𝐝𝑚𝑎𝑡𝑐ℎ):
11 𝑃𝑂(𝐺, 𝑡𝑟′, 𝑘, 𝑃);
12

13 𝑣𝑜𝑖𝑑 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒_𝑃𝑂(𝐺, 𝑘, 𝑃 , 𝐴):
14 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡(𝑣 ∈ 𝑉 (𝐺)):
15 𝑃𝑂(𝐺, {𝑣}, 𝑘, 𝑃 𝐴);
16 𝑣𝑜𝑖𝑑 𝑃𝐴(𝐺, 𝑡𝑟, 𝑘, 𝐸𝑃):
17 𝐢𝐟 (|𝑡𝑟| == 𝑘):
18 𝐴(𝑡𝑟);
19 𝐫𝐞𝐭𝐮𝐫𝐧;
20 𝑁 ′ ← ∅;
21 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡(𝑖 ∈𝐸𝑃 [|𝑡𝑟|].𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑖𝑒𝑠):
22 𝑁 ′ ← 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑁 ′, 𝑡𝑟[𝑖].𝑎𝑑𝑗);
23 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ∈𝑁 ′):
24 𝑠𝑦𝑚 ← 𝑏𝑟𝑒𝑎𝑘𝑆𝑦𝑚(𝑡𝑟, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝐸𝑃);
25 𝑡𝑟′ ← 𝑡𝑟.𝑎𝑝𝑝𝑒𝑛𝑑(𝑛);
26 𝐢𝐟 (𝑠𝑦𝑚) ∶ 𝑃𝐴(𝐺, 𝑡𝑟′, 𝑘, 𝑃 , 𝐸𝑃);
27

28 𝑣𝑜𝑖𝑑 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒_𝑃𝐴(𝐺, 𝑘, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠, 𝐴):
29 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡(𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ∈ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠):
30 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡(𝑣 ∈ 𝑉 (𝐺)):
31 𝑃𝐴(𝐺, {𝑣}, 𝑘, 𝑔𝑒𝑡𝐸𝑃 (𝑝𝑎𝑡𝑡𝑒𝑟𝑛), 𝐴);

Algorithm 1 depicts the implementation of subgraph enumeration
for both the enumeration paradigms: pattern-oblivious (𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒_𝑃𝑂)
and pattern-aware (𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒_𝑃𝐴). In both algorithms, we use the term
candidate to represent vertices belonging to the neighborhood of the
current traversal. In the pattern-oblivious approach (PO function), all
vertices in the neighborhood of the traversal are used to create can-
didates regardless of the desired pattern. To eliminate automorphisms,
custom canonicality-checking algorithms are applied in each candidate
(line 8). Custom pattern functions are required to keep only traver-
sals matching the pattern (line 9), and these functions usually rely
on subgraph isomorphism tests. Subgraph enumeration continues for
canonical candidates matching the pattern (line 10) as long as a traver-
sal does not reach the limit size (line 2). In this paradigm, we need
to enumerate all subgraphs starting from each vertex only once (lines
14-15), as all subgraphs targeting the desired property are visited.

The pattern-aware approach (PA function) receives an extra param-
eter: a pre-processed exploration plan (𝐸𝑃). An 𝐸𝑃 is an array with 𝑘
vertices such that 𝐸𝑃 [𝑖] indicates which vertices of a traversal with
𝑖 vertices must have their adjacency lists visited to generate candi-
3

dates matching the desired pattern. In this paradigm, the candidates
Journal of Parallel and Distributed Computing 191 (2024) 104903

are generated using set-intersection operations [37] without the need
of the pattern function 𝑃 . Lines 21-22 generate the initial set of candi-
dates using a subset of the neighborhood indicated by the exploration
plan, and for each candidate (line 23), canonical candidates are kept
applying custom straightforward comparisons (called symmetry break-

ing rules) of each candidate with specific vertices in the traversal (line
24). As the pattern-oblivious paradigm, subgraph enumeration contin-
ues for canonical candidates matching the pattern (line 26) as long as
a traversal does not reach the limit size (line 17). The pattern-aware
paradigm starts an enumeration from each vertex of the graph for each
pattern modeling the desired property (lines 29-31), thus incurring in
more iterations over the graph than the pattern-oblivious paradigm.

The computational cost of the pattern-oblivious paradigm does not
depend on customized exploration rules. Besides, in order to visit all
subgraphs of size 𝑘, it requires one call to the 𝑃𝑂 function starting
from each vertex/edge of the input graph regardless of the amount
of patterns searched. This approach has three major drawbacks: it
visits adjacency lists that do not have chances of matching the pat-
tern; the linear-time complexity of the general-purpose canonicality
checking algorithms [45] applied over a high volume of candidates
throughout enumeration; the need for constant isomorphism checking
in each canonical candidate (the state-of-the-art isomorphism tools are
designed for CPU [39,29]).

The pattern-aware approach visits only the adjacency lists that can
generate candidates matching the pattern. Thus, it does not visit un-
necessary adjacency lists. After the intersection between the restricted
set of adjacency lists, the candidates generated are inherently matched
to the pattern, thus not requiring subgraph isomorphism algorithms.
Besides, the symmetry-breaking rules are constant-time comparisons
between the candidates and the vertices. This approach has two signifi-
cant drawbacks: its efficiency varies depending on the exploration plan,
whose quality is hard to measure before the execution as the character-
istics of the dataset influence it; given a set of patterns to be searched
in an input graph 𝐺, this paradigm requires one call to the 𝑃𝐴 func-
tion starting from each vertex/edge of the input graph for each pattern,
and as not all the patterns are necessarily present in the graph, some of
these calls represent a waste of computational time.

3. Related work

A significant amount of GPM research has been devoted to archi-
tecture-conscious implementations targeting various parallel processors
(CPUs, GPUs and other accelerators) [11,1,32,40,17,30,34,46,26,2,5,
51,6]. However, these solutions do not provide a general-purpose envi-
ronment that allows the design of custom programs for different appli-
cation scenarios and thus, this section primarily reviews the literature
on GPM systems.
GPM Systems for CPU. Arabesque [45] is one of the first GPM sys-
tems targeting distributed memory machines. It is pattern-oblivious and
proposes a data structure (ODAG) to compress subgraphs in-memory
to mitigate the memory demands of the BFS while it also employs
load balancing. BFS and the pattern-oblivious design are frequently
adopted together by out-of-core GPM systems. G-miner [8] and its suc-
cessor G-thinker [49] are distributed frameworks that use a task-based
strategy for accelerating out-of-core graph mining computations, but
they lack high-level abstractions for improved programming experi-
ence. RStream [47] is a relational GPM system that relies on expensive
join operations to perform subgraph enumeration. Kaleido [52] is an
out-of-core system. It proposes a novel compact data structure to store
intermediate enumeration states (an improvement over Arabesques’s
ODAG) with an I/O layer. The key contribution of Kaleido w.r.t. load
imbalance is a strategy to predict the size of the subgraph candidates
level by level and use this information to create subgraph partitions
between threads. Although RStream and Kaleido are out-of-core, their
design based on BFS limits the length of subgraphs feasible to be enu-

merated due to the inherent combinatorial explosion of GPM problems.

S. Ferraz, V. Dias, C.H.C. Teixeira et al.

Fractal [13] is a distributed memory system to use a DFS strategy and
to focus on programming productivity. DFS reduces the materialization
of the intermediate states of the enumeration and, consequently, the
memory requirements. In order to mitigate load imbalance, an intra-
and inter-machine work-stealing mechanism is proposed. Whenever the
patterns of subgraphs are known apriori, the search can be optimized
via specific (pattern-oriented) execution plans.

LIGHT [44] adopts the pattern-aware approach and accelerates the
computation with vectorized set intersection operations and by avoid-
ing redundant computations. Besides the fact that LIGHT is designed
specifically for subgraph matching task, it remains unclear how to
handle and to compose more complex applications relying on cus-
tomized filtering conditions and/or multi-pattern subgraph exploration.
AutoMine [37] fills this gap by proposing an automated code genera-
tion for custom patterns that explicitly leverages loop-invariant proper-
ties of nested loops that arise from pre-determined exploration plans.
Peregrine [27] proposes an interface that allows high-level program-
ming of GPM algorithms. It incorporates several optimizations such
as avoiding redundant set operations [44] and minimum vertex cover
matching [31]. Although Peregrine proposes a minimalist static load
balancing scheme for shared-memory machines, it is unclear how to
scale the strategy to GPUs.

GraphPi [42] and GraphZero [38] are pattern-aware systems that
propose improvements for nested-loop-based (e.g., AutoMine [37]) im-
plementations of GPM algorithms. GraphPi handles a different challenge
which is the cost of symmetry-breaking conditions used by exploration
plans in pattern-aware systems. GraphZero, on the other hand, proposes
improvements to the code generation model for GPM programs and
thus. Both systems are DFS and exhibit a low-memory footprint, but
neither optimize memory access or propose dynamic load balancing
schemes appropriate for massive parallel systems on GPU for skewed
workloads such as GPM problems. Pattern-aware GPM systems must
enumerate querying patterns apriori and generate expĺoration plans in-
dividually for each pattern (e.g., in motif counting of subgraphs with 8
vertices there are 11, 117 different patterns), which usually represents
non-negligible overhead. To mitigate this issue, SumPA [19] proposes
to merge generated patterns (and exploration plans) according to their
similarities to reduce redundant computation. This solution, however,
has limited impact.
GPM Systems for GPU. Pangolin [9] is the first GPM system to leverage
GPUs. It uses a pattern-oblivious enumeration with BFS, which enables
a Bulk Synchronous Parallel (BSP) model where subgraphs are mate-
rialized on GPU’s memory and redistributed among processing units at
each step. Because of the BFS high memory demands, Pangolin can only
search for small subgraphs.

Most pattern-aware GPUs systems handle a more simple and fun-
damental task in which the goal is to match a query graph (pattern)
against the data graph. PBE [20] proposes an exploration for the sce-
narios where the data graph does not fit into GPU’s memory. PBE
accomplishes this by using a customized graph partitioning scheme.
VSGM [28] is build upon PBE’s ideas and improves it by optimizing
partitions (bins) via fast heuristics that allow overlapping processing
and partition generation. PBE and VSGM do not directly handle the op-
timization of memory access on GPU neither the imbalance challenge
inherent of subgraph enumeration. Thus, they can not enumerate larger

subgraphs. However, our efficient GPU enumeration design could be
enhanced by incorporating these partitioning schemes to handle larger
graphs.

RPS [21] is a pattern-aware BFS system that leverages reuse of set
intersections. This work is also complementary and orthogonal to ours
– in fact, the routines proposed by RPS to optimize the search space
exploration of a specific pattern can be implemented through our op-
timized warp-centric primitives, ensuring coalesced memory accesses
and balanced executions.

PARSEC [14] implements subgraph enumeration via pattern-aware
4

and a hybrid BFS/DFS exploration. It matches the first two vertices of a
Journal of Parallel and Distributed Computing 191 (2024) 104903

pattern using BFS to materialize a set of traversals and generate parallel
GPU tasks. Each parallel task is responsible for independently enumer-
ating a subset of subgraphs via a DFS exploration. Although this static
workload generation and distribution may be effective for small sub-
graphs, imbalance becomes critical as larger subgraphs are processed.
Our load balancing strategy is dynamic and do not suffer from this prob-
lem, as it reacts to imbalance at run-time.

STMatch [48] considers a slightly different subgraph enumeration
problem that does not break symmetries. Rather than eliminating au-
tomorphisms, STMatch visits the same subgraph several times, and
unnecessary results are removed using the theoretical multiplicity of
the pattern. It proposes a hierarchical work-stealing mechanism to bal-
ance the load on one or multiple GPUs.

G2Miner [7] is a recent pattern-aware GPU system, a successor (and
improved version) of Pangolin [9]. G2Miner provides a warp-centric
scheme to perform set-intersection operations and improve divergences
and memory coalescence, but only this operation is addressed and the
rest of the enumeration pipeline does not benefit from it. Thus, gains
obtained with this strategy are small compared to their baseline im-
plementation (2×). For example, our warp-centric enumeration scheme
achieved an average speedup of 67× due to increased memory coales-
cence and lockstep execution. Besides, the system inherits all limitations
of pure pattern-aware systems.

In general, while GPU GPM systems attained notable performance
gains, these works have not fully addressed all critical challenges of
subgraph enumeration targeting this architecture (combinatorial explo-
sion, memory uncoalescence, divergences, load imbalance and flexible
enumeration paradigm). The DuMato system proposed here deals with
all these challenges and can efficiently mine large subgraphs. More-
over, DuMato is extensible in the sense that it is build over a set of
representative GPU primitives, reducing the effort to incorporate mul-
tiple optimizations in the same system (even from different paradigms)
and making the modeling of algorithms more productive.

4. Strategies for efficient high-level subgraph enumeration on
GPUs

This section presents our optimization strategies to mitigate the
main challenges for subgraph enumeration on GPUs: the high mem-
ory demand generated by combinatorial explosion; the memory unco-
alescence, divergences and load imbalance generated by irregularity;
the flexibility in the choice of the enumeration paradigm. The DFS-wide
traversal strategy ensures that memory demand is bounded and adjusted
based on the choice of the enumeration paradigm. DuMato, our high-
level warp-centric subgraph enumeration system, also mitigates mem-

ory uncoalescence and divergences by providing regular execution and
memory access patterns, and provides a flexible API to allow the im-
plementation of GPM algorithms using both enumeration paradigms
(pattern-oblivious and pattern-aware). Our warp-level load balancing miti-
gates the load imbalance.

4.1. DFS-wide enumeration strategy

DFS-wide is our novel strategy to traverse a graph on the GPU and
keep the intermediate states needed for both enumeration paradigms.
DFS-wide alternates between BFS and DFS phases to provide regular
execution with affordable memory use. Fig. 2 depicts the enumeration
lattice generated to visit the subgraph {2, 3, 4, 6} using BFS, DFS, and
DFS-wide. In BFS, all intermediate traversals throughout enumeration
are materialized. This allows regular memory accesses, but the combi-
natorial explosion of stages makes BFS memory demand too high. DFS
generates the minimum amount of intermediate states. Despite its low
memory consumption, the memory access pattern of DFS is more sparse
and deteriorates locality.

Different from other systems that use a DFS-like traversal strat-

egy [14,48], the memory consumption of our DFS-wide strategy is ad-

Journal of Parallel and Distributed Computing 191 (2024) 104903S. Ferraz, V. Dias, C.H.C. Teixeira et al.

Fig. 2. BFS, DFS, and DFS-wide strategies.
Fig. 3. Traversal Enumeration data structure used for DFS-wide exploration.

justed according to the enumeration paradigm chosen for enumeration.
Besides, it provides a cache that enables the reuse of intermediate states,
which constitutes the basis for many optimizations proposed by state-of-
the-art pattern-aware systems. To support such flexibility of paradigms
while still ensuring an efficient use of the GPU, we propose an efficient
data structure for maintaining the state of a DFS exploration of traver-
sals. Fig. 3 depicts this data structure considering a snapshot using the
traversal 𝑡𝑟 = {𝑎, 𝑒}.

The traversal enumeration data structure (TE) Both paradigms use a
structure called 𝑇𝐸 (Traversal Enumeration) to keep track of all enu-
meration state required by the DFS-based subgraph exploration, i.e.,
the set of vertex/edge extensions used to produce larger traversals (sub-
graphs). The attribute 𝑙𝑒𝑛 stores the current size of the traversal. The
attribute 𝑡𝑟 is an array with 𝑘 −1 integers to store the ids of the vertices
in the current traversal (the last id of the traversal is not materialized
to save memory, but it is combined with the remaining of the traver-
sal for aggregation as usual). The attribute 𝑒𝑔 is an array with 𝑘 − 1
booleans such that 𝑇𝐸.𝑒𝑔[𝑖] indicates whether the extensions of the
traversal 𝑇𝐸.𝑡𝑟[0 ⋯ 𝑖] have been generated.

The extensions are modeled by a set of 𝑘 − 1 arrays such that
𝑇𝐸.𝑒𝑥𝑡[𝑖] (𝑖 < 𝑘 −2) stores the set of extensions generated by the traver-
sal 𝑇𝐸.𝑡𝑟[0 ⋯ 𝑖]. For example, 𝑇𝐸.𝑒𝑥𝑡[1] stores the extensions gener-
ated by 𝑇𝐸.𝑡𝑟[0, 1] ({𝑎, 𝑒}). The 𝑠𝑖𝑧𝑒𝐸𝑥𝑡𝐼𝑛𝑖 array contains 𝑘 − 1 posi-
5

tions such that any 𝑇𝐸.𝑠𝑖𝑧𝑒𝐸𝑥𝑡𝐼𝑛𝑖[𝑖] stores the initial number set of ex-
Table 1

Worst-case memory consumption of enumeration
paradigms.

Data structure
Paradigm

Pattern-oblivious Pattern-aware

TE.len 1 1
TE.tr 𝑘− 1 𝑘− 1
TE.eg 𝑘− 1 𝑘− 1
TE.ext

∑𝑘−1
𝑖=1 𝑖 ×𝑚𝑎𝑥𝑑(𝐺) (𝑘− 1) ×𝑚𝑎𝑥𝑑(𝐺)

TE.cache − (𝑘− 1) ×𝑚𝑎𝑥𝑑(𝐺)
TE.sizeExtIni 𝑘− 1 𝑘− 1
TE.sizeExtCur 𝑘− 1 𝑘− 1

total 𝑂(𝑘2 ×𝑚𝑎𝑥𝑑(𝐺)) 𝑂(𝑘 ×𝑚𝑎𝑥𝑑(𝐺))

tensions in 𝑇𝐸.𝑒𝑥𝑡[𝑖], and 𝑇𝐸.𝑠𝑖𝑧𝑒𝐸𝑥𝑡𝐶𝑢𝑟[𝑖] stores the actual amount
of extensions in 𝑇𝐸.𝑒𝑥𝑡[𝑖]. We use the last extension of 𝑇𝐸.𝑒𝑥𝑡[𝑖] to
move forward in the enumeration, and the removal of this extension
is implemented as a decrement in the 𝑇𝐸.𝑠𝑖𝑧𝑒𝐸𝑥𝑡𝐶𝑢𝑟[𝑖]. The infor-
mation on 𝑇𝐸.𝑠𝑖𝑧𝑒𝐸𝑥𝑡𝐼𝑛𝑖𝑡[0 ⋯ 𝑖] ensures that original extensions can
be reused and retrieved even after removals indicated by decrements
on 𝑇𝐸.𝑠𝑖𝑧𝑒𝐸𝑥𝑡𝐼𝑛𝑖[0 ⋯ 𝑖]. Indeed, for many patterns, it is beneficial to
cache intermediate extensions to avoid repeated and redundant accesses
to the adjacency lists of the traversal vertices 𝑇𝐸.𝑡𝑟[0 ⋯ 𝑘 − 2]. To en-
able this optimization, we keep a set of 𝑘 − 1 arrays (𝑐𝑎𝑐ℎ𝑒) to store
this information whenever the exploration plan of a pattern indicates
the possibility of reuse (an example is presented in Algorithm 3).

The storage of the intermediate extensions (𝑒𝑥𝑡) and its caching
(𝑐𝑎𝑐ℎ𝑒) dominate the memory cost of the 𝑇𝐸 data structure. The
pattern-oblivious paradigm does not use caching and the extensions
are generated regardless of a pattern. For example, 𝑇𝐸.𝑒𝑥𝑡[1] is allo-
cated to have enough space to store the worst-case scenario where the
two vertices in the traversal have the maximum degree of the graph
(𝑚𝑎𝑥𝑑(𝐺)). Thus, 𝑇𝐸.𝑒𝑥𝑡[1] has 2 × 𝑚𝑎𝑥𝑑(𝐺) positions. This alloca-
tion requirement is repeated until 𝑇𝐸.𝑒𝑥𝑡[𝑘 − 2], which leads to a total
amount of

∑𝑘−2
𝑖=0 𝑖 × 𝑚𝑎𝑥𝑑(𝐺) integer positions to store the extensions

in this paradigm. In the pattern-aware paradigm, the extensions are ex-
tracted from the intersection of adjacency lists. Thus it requires at most
𝑚𝑎𝑥𝑑(𝐺) positions for any 𝑇𝐸.𝑒𝑥𝑡[𝑖], and the same amount is required
for 𝑇𝐸.𝑐𝑎𝑐ℎ𝑒[𝑖]. Thus, the total amount of integer positions to store
the extensions in this paradigm is

∑𝑘−2
𝑖=0 2 ×𝑚𝑎𝑥𝑑(𝐺). The 𝑠𝑖𝑧𝑒𝐸𝑥𝑡𝐼𝑛𝑖𝑡,

𝑠𝑖𝑧𝑒𝐸𝑥𝑡𝐶𝑢𝑟 and 𝑠𝑖𝑧𝑒𝐶𝑎𝑐ℎ𝑒 arrays contain 𝑘 − 1 positions.
Table 1 depicts the worst-case memory consumption of one enumer-

ation task using our DFS-wide strategy for each enumeration paradigm.
DFS-wide fulfills the memory requirements to execute subgraph enu-
meration on a GPU with 12 GB of memory to visit subgraphs up to
31 and 11 using the pattern-aware and pattern-oblivious paradigms,
respectively, for any dataset with maximum degree up to 16 K (e.g.,
LiveJournal, Pokec) and using the recommended number of parallel

enumeration tasks presented in Section 5 (102400 threads).

Journal of Parallel and Distributed Computing 191 (2024) 104903S. Ferraz, V. Dias, C.H.C. Teixeira et al.

Table 2

DuMato API.

Functions Phase Scope

[CT] control(TE) Control
Algorithm-independent

[MV] move(TE) Move

[EX] extend(TE, m_ext, m_cache, m_adj, op) Extend

Algorithm-specific
[FL] filter(TE, P, args) Filter
[A1] aggregate_counter(TE)

Aggregate[A2] aggregate_pattern(TE)

[A3] aggregate_store(TE)

[CC] cache(TE) Extend Optimization
Fig. 4. DuMato execution workflow.

4.2. DuMato: an efficient high-level subgraph enumeration system for GPUs

We describe in this section our subgraph enumeration system called
DuMato, that supports high-level customizable implementations of GPM
algorithms on GPU. DuMato wraps around the DFS-wide strategy and
a set of novel strategies and optimizations designed for efficient GPM
processing on GPU.

4.2.1. Execution workflow and programming API

DuMato adopts the filter-process model [45] depicted on Fig. 4. The
traversal 𝑡𝑟 is the input for the Control phase, which decides whether
the enumeration should proceed or stop (|𝑡𝑟| = 0). In case it proceeds,
the Extend phase assigns a subset of 𝑁(𝑡𝑟) as its initial set of valid
extensions. The Filter phase is an optional phase that keeps only the ex-
tensions that fulfill the desired property 𝑃 . We optimized our previous
execution workflow [18] such that invalid extensions are removed from
the extensions array during the Filter phase, thus eliminating the Com-

pact phase from the workflow. This optimization reduces the number of
iterations through the extensions array and improves the performance.
If the traversal 𝑡𝑟 reaches size 𝑘, the Aggregate phase produces the out-
put of the algorithm (|𝑡𝑟| = 𝑘). The Move phase receives 𝑡𝑟 and decides
whether to move forward (there are unprocessed extensions in 𝑡𝑟) or
backward (all extensions of 𝑡𝑟 were processed). The output of this phase
is a modified version of 𝑡𝑟 that serves as input to the Control phase. The
enumeration continues until all traversals that can be generated from
the input traversal 𝑡𝑟 are visited. The primitives of extend, filter, aggre-

gate, and move phases are implemented within the same kernel call.
Device-wide synchronizations are required only by the control phase
whenever it detects the need for a load-balancing step. In that case, the
CPU copies the enumeration data structures and reorganizes them by
applying our load-balancing algorithm, copying the data back to GPU,
and rescheduling the enumeration kernel back to GPU.

Table 2 presents DuMato’s API with functions categorized per work-
flow phase. Any GPM algorithm uses Control and Move to manage the
workflow cycle. Thus, they are algorithm-independent. The other phases
are algorithm-specific as they are optional or need parameters depend-
ing on the algorithm. Each function receives the 𝑇𝐸 argument (with
runtime information about active traversals) and additional parame-
ters. The Control phase ([CT]) allows runtime checking to determine
whether the enumeration of a traversal should continue. The Move

phase ([MV]) uses the size of current traversal and its extensions to
6

decide moving forward or backward.
The Extend phase ([EX]) receives three masks: 𝑚_𝑒𝑥𝑡, 𝑚_𝑐𝑎𝑐ℎ𝑒 and
𝑚_𝑎𝑑𝑗. Given any 𝑖 < 𝑘 − 1, the i-th lowest bit of 𝑚_𝑎𝑑𝑗, 𝑚_𝑒𝑥𝑡 and
𝑚_𝑐𝑎𝑐ℎ𝑒 indicates whether 𝑇𝐸.𝑒𝑥𝑡[𝑖], 𝑇𝐸.𝑐𝑎𝑐ℎ𝑒[𝑖] and the adjacency of
𝑇𝐸.𝑡𝑟[𝑖] will be used to generate the current extensions, respectively.
The last argument (𝑜𝑝) is a function pointer that receives 𝑇𝐸, 𝑚_𝑒𝑥𝑡,
𝑚_𝑐𝑎𝑐ℎ𝑒 and 𝑚_𝑎𝑑𝑗, and performs the needed operations to generate the
current extensions using the required arrays. We provide two standard
𝑜𝑝 functions: 𝑢𝑛𝑖𝑜𝑛 (for pattern-oblivious algorithms) and 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 (for
pattern-aware paradigms).

The Filter phase ([FL]) receives a user-defined function pointer 𝑃 ,
which models the property 𝑃 defined in terms of subgraphs, along
with its arguments (𝑎𝑟𝑔𝑠). Filter calls the 𝑃 function for each exten-
sion of the current traversal and removes those that do not satisfy 𝑃 .
We may use 𝑃 to design custom subgraph filters for canonical candidate
generation [45], density [35], subgraph matching [22], among others.
The remaining functions ([A1], [A2], and [A3]) produce the outputs
of the algorithms. These functions count the valid traversals visited
throughout enumeration ([A1]), the number of valid traversals visited
for each pattern ([A2]), or store the visited traversals for further down-
stream processing [12,25] ([A3]). We also provide an utility function
𝑐𝑎𝑐ℎ𝑒(𝑇𝐸) ([CC]), which may be called at any point of the execution
workflow to copy the current set of extensions (𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1])
into the cache (𝑇𝐸.𝑐𝑎𝑐ℎ𝑒[𝑇𝐸.𝑙𝑒𝑛 − 1]) for further reuse.

4.2.2. Use case algorithms developed in DuMato

This section presents three representative GPM algorithms in Du-
Mato: clique counting, subgraph matching and motif counting. Clique count-

ing counts the number of cliques with 𝑘 vertices in 𝐺. It represents
algorithms that search for custom patterns with direct reuse of the ex-
tensions. Fig. 5a depicts the exploration plan used to visit cliques with
4 vertices. The vertex numbers represent the order in which the pattern
vertices will be matched in the input graph. Since all vertices in a clique
are connected, the order we visit them does not change the efficiency
of enumeration. Each vertex has three masks associated with the use of
extensions, cache and adjacency lists: 𝑚_𝑒𝑥𝑡, 𝑚_𝑐𝑎𝑐ℎ𝑒 and 𝑚_𝑎𝑑𝑗. Given
any 𝑖 < 3, the enumeration aims to generate 𝑇𝐸.𝑒𝑥𝑡[𝑖] (underlined in
Fig. 5a) using the extensions, cache and adjacency lists indicated by
the associated masks. For the clique pattern, in order to generate any
𝑇𝐸.𝑒𝑥𝑡[𝑖], we need the computed extensions from the previous traversal
𝑇𝐸.𝑒𝑥𝑡[𝑖 −1] and the adjacency of the new vertex 𝑇𝐸.𝑡𝑟[𝑖]. As these sets
are the only needed to generate the current extensions in clique, there
is no need for copying 𝑇𝐸.𝑒𝑥𝑡[𝑖 − 1] to cache and the 𝑚_𝑐𝑎𝑐ℎ𝑒 masks
are set to zero. For example, to generate 𝑇𝐸.𝑒𝑥𝑡[1], the bit 𝑚_𝑒𝑥𝑡[0] is
set to indicate the use of 𝑇𝐸.𝑒𝑥𝑡[0] and the bit 𝑚_𝑎𝑑𝑗[1] is set to indi-
cate the use of the adjacency of 𝑇𝐸.𝑡𝑟[1]. The set intersection operation
is applied to generate any 𝑇𝐸.𝑒𝑥𝑡[𝑖] up to the desired size.

Algorithm 2 presents the implementation of clique counting, and de-
picts the skeleton code used to implement GPM algorithms on DuMato.
It is implemented in a loop-based so that the enumeration of traversals
continues while the termination condition has not been reached (line
5). Extensions are generated whenever necessary (line 7), aggregation
primitives are called when the size of visited subgraphs reaches the tar-
get size (line 11), and at the end of each loop iteration (line 13) DuMato
moves to the next recursion step (forward/backward). These are com-

mon steps in GPM algorithms. The rest of the code is algorithm-specific

Journal of Parallel and Distributed Computing 191 (2024) 104903S. Ferraz, V. Dias, C.H.C. Teixeira et al.

Fig. 5. DuMato’s representation of pattern-aware exploration plans.
(marked with icon). Lines 2 − 4 set the masks of clique counting
to generate any 𝑇𝐸.𝑒𝑥𝑡[𝑖]. The Extend phase (line 8) intersects the re-
quired sets to produce the current extensions, generating only those that
are cliques. The filter implements the symmetry-breaking rule to elim-
inate automorphism (line 9). For cliques, the symmetry breaking rule
ensures that new vertex added to the traversal must be greater than
the last one. The Aggregate phase (line 11) increments the counting by
accumulating the size of the extensions array.

Algorithm 2: Clique counting algorithm.

1 𝑣𝑜𝑖𝑑 𝑐𝑙𝑖𝑞𝑢𝑒_𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔_4(𝑇𝐸)
2 𝐦_𝐞𝐱𝐭 ← [𝟎𝟎𝟎,𝟎𝟎𝟏,𝟎𝟏𝟎];
3 𝐦_𝐜𝐚𝐜𝐡𝐞← [𝟎𝟎𝟎,𝟎𝟎𝟎,𝟎𝟎𝟎];
4 𝐦_𝐚𝐝𝐣← [𝟎𝟎𝟏,𝟎𝟏𝟎,𝟏𝟎𝟎];
5 𝑤ℎ𝑖𝑙𝑒(𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑇𝐸)):
6 𝑙𝑎𝑠𝑡 ← 𝑇𝐸.𝑙𝑒𝑛 − 1;
7 𝑖𝑓 (!𝑇𝐸.𝑒𝑔[𝑙𝑎𝑠𝑡]):
8 𝐞𝐱𝐭𝐞𝐧𝐝(𝐓𝐄,𝐦_𝐞𝐱𝐭[𝐥𝐚𝐬𝐭],𝐦_𝐜𝐚𝐜𝐡𝐞[𝐥𝐚𝐬𝐭],𝐦_𝐚𝐝𝐣[𝐥𝐚𝐬𝐭],&𝐢𝐧𝐭𝐞𝐫);
9 𝐟 𝐢𝐥𝐭𝐞𝐫(𝐓𝐄, &𝐥𝐨𝐰𝐞𝐫_𝐭𝐡𝐚𝐧 , 𝐓𝐄.𝐭𝐫[𝐥𝐚𝐬𝐭]);

10 𝑖𝑓 (𝑇𝐸.𝑙𝑒𝑛 == 𝑘 − 1):
11 𝐚𝐠𝐠𝐫𝐞𝐠𝐚𝐭𝐞_𝐜𝐨𝐮𝐧𝐭𝐞𝐫(𝐓𝐄);
12 𝑚𝑜𝑣𝑒(𝑇𝐸);

The subgraph matching represents GPM algorithms that search for
custom patterns which allow different exploration plans that may take
advantage of reuse through caching of snapshots of the extensions
set. In order to depict its implementation on DuMato, we use the
chordal pattern with 4 vertices, and Fig. 5b shows the exploration plan
adopted. The generation of 𝑇𝐸.𝑒𝑥𝑡[0] requires only the adjacency list
of 𝑇𝐸.𝑡𝑟[0], thus only 𝑚_𝑎𝑑𝑗[0] is set. The generation of 𝑇𝐸.𝑒𝑥𝑡[1] re-
quires the intersection of the adjacency lists of 𝑇𝐸.𝑡𝑟[0] and 𝑇𝐸.𝑡𝑟[1],
thus the bits 𝑚_𝑎𝑑𝑗[0] and 𝑚_𝑎𝑑𝑗[1] are set. Before applying symmetry-
breaking to 𝑇𝐸.𝑒𝑥𝑡[1], we copy this set to 𝑇𝐸.𝑐𝑎𝑐ℎ𝑒[1], as it will be
reused to generate 𝑇𝐸.𝑒𝑥𝑡[2]. The generation of 𝑇𝐸.𝑒𝑥𝑡[2] requires
again the intersection of the adjacency lists of 𝑇𝐸.𝑡𝑟[0] and 𝑇𝐸.𝑡𝑟[1],
which was cached previously. Thus, we need only the set 𝑇𝐸.𝑐𝑎𝑐ℎ𝑒[1]
to generate 𝑇𝐸.𝑒𝑥𝑡[2], indicated by the bit 𝑚_𝑐𝑎𝑐ℎ𝑒[1]. The code is pre-
sented in Algorithm 2 for the chordal pattern with 4 vertices. The masks
(lines 2-4) are set according to the exploration plan in Fig. 5b. The set
intersection operation of specific sets guarantee only extensions match-
ing the chordal pattern (line 8). We call the cache primitive to store the
extensions of 𝑇𝐸.𝑒𝑥𝑡[1] for reuse in 𝑇𝐸.𝑒𝑥𝑡[2]. The only filter needed
is the one that implements the symmetry-breaking rule to eliminate au-
tomorphisms for the chordal pattern (line 10).

The motif counting algorithm (Algorithm 4) counts the occurrence
of each possible pattern with 𝑘 vertices in an input graph 𝐺, thus rep-
resenting GPM algorithms that search for multiple patterns. Note that,
different from the pattern-aware subgraph matching, this implementa-
tion is pattern-oblivious and does not rely on custom GPU kernels for
each pattern, thus the same kernel can be used for any 𝑘. As any pattern
may be visited during enumeration, there is no reuse of intermediate ex-
tensions, and all masks in 𝑚_𝑒𝑥𝑡 (line 2) and 𝑚_𝑐𝑎𝑐ℎ𝑒 (line 3) are set
7

to zero. Given any 𝑖 < 𝑘 − 2, the mask in 𝑚_𝑎𝑑𝑗[𝑖] (line 4) indicates
Algorithm 3: Subgraph matching of the chordal square.

1 𝑣𝑜𝑖𝑑 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔_𝑐ℎ𝑜𝑟𝑑𝑎𝑙_4(𝑇𝐸)
2 𝐦_𝐞𝐱𝐭 ← [𝟎𝟎𝟎,𝟎𝟎𝟎,𝟎𝟎𝟎];
3 𝐦_𝐜𝐚𝐜𝐡𝐞← [𝟎𝟎𝟎,𝟎𝟎𝟎,𝟎𝟏𝟎];
4 𝐦_𝐚𝐝𝐣← [𝟎𝟎𝟏,𝟎𝟏𝟏,𝟎𝟎𝟎];
5 𝑤ℎ𝑖𝑙𝑒(𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑇𝐸)):
6 𝑙𝑎𝑠𝑡 ← 𝑇𝐸.𝑙𝑒𝑛 − 1;
7 𝑖𝑓 (!𝑇𝐸.𝑒𝑔[𝑙𝑎𝑠𝑡]):
8 𝐞𝐱𝐭𝐞𝐧𝐝(𝐓𝐄,𝐦_𝐞𝐱𝐭[𝐥𝐚𝐬𝐭],𝐦_𝐜𝐚𝐜𝐡𝐞[𝐥𝐚𝐬𝐭],𝐦_𝐚𝐝𝐣[𝐥𝐚𝐬𝐭],&𝐢𝐧𝐭𝐞𝐫);
9 𝐢𝐟 (𝐓𝐄.𝐥𝐞𝐧 == 𝟏) ∶ 𝐜𝐚𝐜𝐡𝐞(𝐓𝐄);

10 𝐟 𝐢𝐥𝐭𝐞𝐫(𝐓𝐄,&𝐬𝐲𝐦𝐦𝐞𝐭𝐫𝐲_𝐜𝐡𝐨𝐫𝐝𝐚𝐥_𝟒, []);
11 𝑖𝑓 (𝑇𝐸.𝑙𝑒𝑛 == 𝑘 − 1):
12 𝐚𝐠𝐠𝐫𝐞𝐠𝐚𝐭𝐞_𝐩𝐚𝐭𝐭𝐞𝐫𝐧(𝐓𝐄);
13 𝑚𝑜𝑣𝑒(𝑇𝐸);

that all the adjacency lists of vertices in 𝑇𝐸.𝑡𝑟[0 ⋯ 𝑖] are used to gen-
erate 𝑇𝐸.𝑒𝑥𝑡[𝑖]. In the case of the current extensions have not been
generated (line 7), the Extend phase of the algorithm (line 8) is pattern-
oblivious and performs the union of the adjacency lists of all vertices in
the traversal to produce the current set of extensions. The Filter phase
is implemented in one step, and the function pointer is_canonical (called
in line 9) keeps only the canonical candidates using a generic canoni-
cal filtering algorithm [45] to eliminate automorphisms. Finally, if the
traversal reaches the size of 𝑘 − 1 (line 10), the Aggregate phase (line
11) converts each extension to its pattern and accumulates the counting
for each pattern found.

Algorithm 4: Motif counting algorithm.

1 𝑣𝑜𝑖𝑑 𝑚𝑜𝑡𝑖𝑓 _𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔(𝑇𝐸)
2 𝐦_𝐞𝐱𝐭 ← [𝟎𝟎...𝟎𝟎,𝟎𝟎...𝟎𝟎,⋯ ,𝟎𝟎...𝟎𝟎];
3 𝐦_𝐜𝐚𝐜𝐡𝐞← [𝟎𝟎...𝟎𝟎,𝟎𝟎...𝟎𝟎,⋯ ,𝟎𝟎...𝟎𝟎];
4 𝐦_𝐚𝐝𝐣← [𝟎𝟎...𝟎𝟏,𝟎𝟎...𝟏𝟏,𝟎𝟎...𝟏𝟏𝟏⋯ ,𝟏𝟏...𝟏𝟏];
5 𝑤ℎ𝑖𝑙𝑒(𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑇𝐸)):
6 𝑙𝑎𝑠𝑡 ← 𝑇𝐸.𝑙𝑒𝑛 − 1;
7 𝑖𝑓 (!𝑇𝐸.𝑒𝑔[𝑙𝑎𝑠𝑡]):
8 𝐞𝐱𝐭𝐞𝐧𝐝(𝐓𝐄,𝐦_𝐞𝐱𝐭[𝐥𝐚𝐬𝐭],𝐦_𝐜𝐚𝐜𝐡𝐞[𝐥𝐚𝐬𝐭],𝐦_𝐚𝐝𝐣[𝐥𝐚𝐬𝐭],&𝐮𝐧𝐢𝐨𝐧);
9 𝐟 𝐢𝐥𝐭𝐞𝐫(𝐓𝐄,&𝐢𝐬_𝐜𝐚𝐧𝐨𝐧𝐢𝐜𝐚𝐥, []);

10 𝑖𝑓 (𝑇𝐸.𝑙𝑒𝑛 == 𝑘 − 1):
11 𝐚𝐠𝐠𝐫𝐞𝐠𝐚𝐭𝐞_𝐩𝐚𝐭𝐭𝐞𝐫𝐧(𝐓𝐄);
12 𝑚𝑜𝑣𝑒(𝑇𝐸);

4.2.3. Warp-centric design

The warp-centric programming model [24] is used in irregular al-
gorithms to improve their execution regularity. In our design, a warp
receives a traversal for processing, and threads within a warp alternate
between SIMD and SISD phases throughout the execution workflow.
Our goal with this model is to minimize execution divergence and to
exploit the opportunities of parallelism and regular memory access en-
abled by the DFS-wide. The phases of DuMato’s enumeration workflow
were designed based on three main warp-centric primitives: find_one,

find_many, and write, discussed next.

S. Ferraz, V. Dias, C.H.C. Teixeira et al.

Core primitives. In essence, the core primitives are used to search for
values in the adjacency lists and extensions, and are used during the
enumeration phases and to implement specific 𝑜𝑝 functions (depicted
in Table 2). The find_one is employed when threads within a warp need
to find whether the same value 𝑥 is in an array 𝑣 (Algorithm 5). Our de-
fault implementation has a linear-time complexity, as it does not assume
an ordering of the input array. However, we also provide a log-time im-
plementation whenever the array is ordered, thus reducing the overall
complexity. The most important use of find_one primitive is during the
subgraph induction, when threads within a warp induce a traversal and
need to check whether one extension is in each adjacency list of the
vertices in the traversal. The variable found_local stores whether the 𝑥
was found in 𝑣 by the current thread, and variable found_global stores
whether any thread within a warp found 𝑥 in 𝑣. The main loop (line
3) iterates through 𝑣 in parallel (32 is the warp size) and each thread
within a warp receives a different value 𝑣 to compare with 𝑥 using coa-
lesced memory requests to access 𝑣 (line 4). Any_sync (line 5) is a warp
exchange primitive used to exchange variable found_local. In case any
found_local variable is not 0, any_sync returns 1 for all threads within a
warp and sets 1 to found_global for all threads. Otherwise, found_global

is set to 0 and the search continues.

Algorithm 5: Primitive find_one.

1 𝑖𝑛𝑡 𝑓𝑖𝑛𝑑_𝑜𝑛𝑒(𝑥, 𝑣, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑)∶
2 𝑓𝑜𝑢𝑛𝑑_𝑙𝑜𝑐𝑎𝑙← 𝑓𝑜𝑢𝑛𝑑_𝑔𝑙𝑜𝑏𝑎𝑙← 0 ;
3 𝑓𝑜𝑟 (𝑝𝑜𝑠 ← 𝑠𝑡𝑎𝑟𝑡 + 𝑙𝑎𝑛𝑒 ; 𝑝𝑜𝑠 < 𝑒𝑛𝑑 && !𝑓𝑜𝑢𝑛𝑑_𝑔𝑙𝑜𝑏𝑎𝑙 ; 𝑝𝑜𝑠+= 32)∶
4 𝑓𝑜𝑢𝑛𝑑_𝑙𝑜𝑐𝑎𝑙← 𝑣[𝑝𝑜𝑠] ← 𝑥;
5 𝑓𝑜𝑢𝑛𝑑_𝑔𝑙𝑜𝑏𝑎𝑙← 𝑎𝑛𝑦_𝑠𝑦𝑛𝑐(𝑓𝑜𝑢𝑛𝑑_𝑙𝑜𝑐𝑎𝑙);
6 return 𝑓𝑜𝑢𝑛𝑑_𝑔𝑙𝑜𝑏𝑎𝑙;

The find_many is used when threads within a warp need to find dif-
ferent values in an array 𝑣 (Algorithm 6). This primitive is used by
warps to find values in the extensions and in the traversal in paral-
lel, mainly in the extend and filter phases. The algorithm is similar to
find_one, but with two crucial differences: variable found_global stores a
mask such that the i-th bit stores whether the i-th thread in the warp
has already found its value in 𝑣, and is built using the ballot_sync warp
exchange primitive; the main loop continues for all threads within a
warp as long as there is at least one thread that still has not found its
value in 𝑣. Although we could propose a log-time implementation for
find_many in the cases where the input array is ordered, this would gen-
erate plenty of extra memory transactions, as each thread of the warp
searches for a different value and would demand different regions of
the input array at the execution. Thus, for this primitive, we provide
only a linear-time implementation.

Algorithm 6: Primitive find_many.

1 𝑖𝑛𝑡 𝑓𝑖𝑛𝑑_𝑚𝑎𝑛𝑦(𝑣𝑎𝑙𝑢𝑒, 𝑣, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑)∶
2 𝑓𝑜𝑢𝑛𝑑_𝑙𝑜𝑐𝑎𝑙← 𝑓𝑜𝑢𝑛𝑑_𝑔𝑙𝑜𝑏𝑎𝑙← 0;
3 𝑝𝑜𝑠 ← 𝑠𝑡𝑎𝑟𝑡;
4 𝑓𝑜𝑟 (; 𝑝𝑜𝑠 < 𝑒𝑛𝑑 && 𝑓𝑜𝑢𝑛𝑑_𝑔𝑙𝑜𝑏𝑎𝑙 != 0xffffffff ; 𝑠𝑡𝑎𝑟𝑡++)∶
5 𝑓𝑜𝑢𝑛𝑑_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑣[𝑝𝑜𝑠] == 𝑣𝑎𝑙𝑢𝑒;
6 𝑓𝑜𝑢𝑛𝑑_𝑙𝑜𝑐𝑎𝑙← 𝑓𝑜𝑢𝑛𝑑_𝑙𝑜𝑐𝑎𝑙 || 𝑓𝑜𝑢𝑛𝑑_𝑐𝑢𝑟𝑟𝑒𝑛𝑡;
7 𝑓𝑜𝑢𝑛𝑑_𝑔𝑙𝑜𝑏𝑎𝑙← 𝑏𝑎𝑙𝑙𝑜𝑡_𝑠𝑦𝑛𝑐(𝑓𝑜𝑢𝑛𝑑_𝑙𝑜𝑐𝑎𝑙);
8 return 𝑓𝑜𝑢𝑛𝑑_𝑙𝑜𝑐𝑎𝑙;

The write primitive (Algorithm 7) is used when threads within a
warp have different values to be written in an array 𝑣, but some may be
invalid due to previous filtering. This primitive reorganizes 𝑣 and valid
values are written at the beginning of 𝑣 and invalid ones at the end of
𝑣.

The function receives the array 𝑣, the starting position in 𝑣 where
8

values should be written, the value itself, and a boolean indicating
Journal of Parallel and Distributed Computing 191 (2024) 104903

Algorithm 7: Primitive write.

1 𝑣𝑜𝑖𝑑 𝑤𝑟𝑖𝑡𝑒(𝑣, 𝑠𝑡𝑎𝑟𝑡, 𝑣𝑎𝑙𝑢𝑒, 𝑣𝑎𝑙𝑖𝑑)∶
2 𝑣𝑎𝑙𝑖𝑑𝑠 ← 𝑏𝑎𝑙𝑙𝑜𝑡_𝑠𝑦𝑛𝑐(𝑣𝑎𝑙𝑖𝑑);
3 𝑎𝑚𝑜𝑢𝑛𝑡_𝑣𝑎𝑙𝑖𝑑𝑠 ← 𝑝𝑜𝑝𝑐(𝑣𝑎𝑙𝑖𝑑𝑠);
4 𝑣𝑎𝑙𝑖𝑑𝑠_𝑜𝑓𝑓𝑠𝑒𝑡 ← 𝑐𝑜𝑢𝑛𝑡_1_𝑟𝑖𝑔ℎ𝑡(𝑣𝑎𝑙𝑖𝑑𝑠, 𝑙𝑎𝑛𝑒);
5 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑠_𝑜𝑓𝑓𝑠𝑒𝑡 ← 𝑎𝑚𝑜𝑢𝑛𝑡_𝑣𝑎𝑙𝑖𝑑𝑠 + 𝑐𝑜𝑢𝑛𝑡_0_𝑟𝑖𝑔ℎ𝑡(𝑣𝑎𝑙𝑖𝑑𝑠, 𝑙𝑎𝑛𝑒);
6 𝑝𝑜𝑠 ← 𝑠𝑡𝑎𝑟𝑡 + (𝑣𝑎𝑙𝑖𝑑 ? 𝑣𝑎𝑙𝑖𝑑𝑠_𝑜𝑓𝑓𝑠𝑒𝑡 ∶ 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑠_𝑜𝑓𝑓𝑠𝑒𝑡);
7 𝑣[𝑝𝑜𝑠] ← 𝑣𝑎𝑙𝑢𝑒;
8 𝑣.𝑙𝑒𝑛 += 𝑎𝑚𝑜𝑢𝑛𝑡_𝑣𝑎𝑙𝑖𝑑𝑠

whether the value is valid. The threads call the ballot_sync warp ex-
change primitive to build a mask that gathers the valid value of all
threads (line 2). Line 3 counts the 1’s in the mask (popc), representing
the number of valid values the warp will write. Each thread counts the
amount of valid (line 4) and invalid (line 5) values that the threads with
lower lane will write, and threads use this information to calculate the
exact position the values will be written in 𝑣 (lines 6 and 7), depend-
ing on whether they are valid or not. As invalid values are written after
the valid ones, the size of the array is increased only by the number of
valid values (line 8). The positions written by threads are contiguous
to ensure coalesced memory requests, and all threads write their val-
ues to guarantee a divergence-free execution. This primitive is essential
to allow the optimization that removes the compact phase of DuMato
workflow, as it will be used to reorganize the extensions inside the filter
phase.
Warp-Centric Implementation of Enumeration Phases. Next we de-
tail the warp-centric implementation of each subgraph enumeration
phase depicted in Fig. 4. Algorithm 8 presents the implementation of
the Extend phase, the BFS phase of DFS-wide that performs custom op-
erations implemented by function pointer 𝑜𝑝 (e.g., intersection) using
the specified extensions, cache lines and adjacency lists provided by the
masks. Lines 2-3 are initial SISD steps that check whether the extensions
have already been generated and, in case they have not, the 𝑒𝑔 flag is
set to true as the extensions will be generated. After initializing the cur-
rent extensions (line 5), lines 7-19 iterate over the input masks to call
the function 𝑜𝑝 and perform the desired operations with the appropriate
sets and the results are gradually stored in the current 𝑇𝐸.𝑒𝑥𝑡.

Algorithm 8: Extend primitive.

1 𝑣𝑜𝑖𝑑 𝑒𝑥𝑡𝑒𝑛𝑑(𝑇𝐸, 𝑚_𝑒𝑥𝑡, 𝑚_𝑐𝑎𝑐ℎ𝑒, 𝑚_𝑎𝑑𝑗, 𝑜𝑝):
2 𝑒𝑔 ← 𝑇𝐸.𝑒𝑔[𝑇𝐸.𝑙𝑒𝑛 − 1];
3 𝑖𝑓 (!𝑒𝑔) ∶
4 𝑇𝐸.𝑒𝑔[𝑇𝐸.𝑙𝑒𝑛 − 1] ← 𝑡𝑟𝑢𝑒;
5 𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1] ← ∅;
6 𝑖 ← 0;
7 𝑤ℎ𝑖𝑙𝑒(𝑖 < 𝑘 − 1):
8 𝑏𝑖𝑡 ← 𝑙𝑜𝑤𝑒𝑠𝑡_𝑏𝑖𝑡(𝑚_𝑒𝑥𝑡);
9 𝑖𝑓 (𝑏𝑖𝑡):

10 𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1] ← 𝑜𝑝(𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1], 𝑇𝐸.𝑒𝑥𝑡[𝑖]);
11 𝑏𝑖𝑡 ← 𝑙𝑜𝑤𝑒𝑠𝑡_𝑏𝑖𝑡(𝑚_𝑐𝑎𝑐ℎ𝑒);
12 𝑖𝑓 (𝑏𝑖𝑡):
13 𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1] ← 𝑜𝑝(𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1], 𝑇𝐸.𝑐𝑎𝑐ℎ𝑒[𝑖]);
14 𝑏𝑖𝑡 ← 𝑙𝑜𝑤𝑒𝑠𝑡_𝑏𝑖𝑡(𝑚_𝑎𝑑𝑗);
15 𝑖𝑓 (𝑏𝑖𝑡):
16 𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1] ← 𝑜𝑝(𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1], 𝑇𝐸.𝑎𝑑𝑗[𝑖]);
17 𝑚_𝑒𝑥𝑡 ←𝑚_𝑒𝑥𝑡 >> 1;
18 𝑚_𝑐𝑎𝑐ℎ𝑒 ←𝑚_𝑐𝑎𝑐ℎ𝑒 >> 1;
19 𝑚_𝑎𝑑𝑗 ←𝑚_𝑎𝑑𝑗 >> 1;

Filter iterates over a set of extensions and removes those that do
not fulfill property 𝑃 . As shown in Algorithm 9, it receives the current
traversal and a function pointer 𝑃 , which returns a boolean to indicate
whether an extension is valid. Each thread within the warp gets an ex-
tension (line 5) and passes it to the 𝑃 function (line 6). For example,

one of the filters used in clique counting checks whether the id of an

S. Ferraz, V. Dias, C.H.C. Teixeira et al.

extension is lower than the id of 𝑡𝑟’s last vertex. 𝑃 functions are warp-
centric and can be implemented using DuMato primitives to access the
𝑇𝐸 data structure. Lines 7-8 write the extensions to the extensions ar-
ray, keeping only the valid ones. The remodeling of this phase using
the write primitive allowed the removal of the compact phase from the
execution workflow, as this primitive writes values back to the exten-
sions array keeping them in contiguous memory positions. Lines 9-10
compute the number of valid extensions after filtering.

Algorithm 9: Filter primitive.

1 𝑣𝑜𝑖𝑑 𝑓𝑖𝑙𝑡𝑒𝑟(𝑇𝐸, 𝑃 , 𝑎𝑟𝑔𝑠)
2 𝑒 ← 𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1];
3 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 ← 0;
4 𝑓𝑜𝑟(𝑖 ←𝑤𝑎𝑟𝑝_𝑙𝑎𝑛𝑒; 𝑖 < 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑠.𝑙𝑒𝑛 ; 𝑖+ =𝑤𝑎𝑟𝑝_𝑠𝑖𝑧𝑒) ∶
5 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 ← 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑠[𝑖];
6 𝑣𝑎𝑙𝑖𝑑 ← 𝑃 (𝑇𝐸, 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛, 𝑎𝑟𝑔𝑠)
7 𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1].𝑙𝑒𝑛 − = 𝑤𝑎𝑟𝑝_𝑠𝑖𝑧𝑒
8 𝑤𝑟𝑖𝑡𝑒(𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1], 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑, 𝑣𝑎𝑙𝑖𝑑, 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛)
9 𝑎𝑚𝑜𝑢𝑛𝑡 ← 𝑝𝑜𝑝𝑐(𝑏𝑎𝑙𝑙𝑜𝑡_𝑠𝑦𝑛𝑐(𝑣𝑎𝑙𝑖𝑑));

10 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 ← 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 + 𝑎𝑚𝑜𝑢𝑛𝑡;

Move implements the DFS phase of DFS-wide, thus allowing a warp
to move forward or backward in the enumeration of a traversal (recur-
sion step). It is primarily a synchronization step to update the current
traversal to the warp. Thus, most of its steps are SISD.

Aggregate produces outputs of the GPM algorithms and two of those
primitives (aggregate_count and aggregate_store) are standard. The first
counts, for instance, the total of visited subgraphs matching a property,
while the latter outputs visited subgraphs to the CPU asynchronously
whenever it is required.

The most complex and challenging aggregate primitive for GPU im-
plementation is the aggregate_pattern is used to output counters for each
possible canonical representative that matches the desired property,
such as in the motif counting. The complexity holds on the conver-
sion of a visited traversal into its canonical representative (canonical
relabeling). Due to that, All subgraph enumeration systems in the liter-
ature perform this operation on the CPU using tools such as Nauty [39].
We propose a novel pre-processed dictionary to allow this conversion
on the GPU (Fig. 6).

We provide a pre-processed input dictionary that converts each pos-
sible induced traversal with 𝑘 vertices from its raw bitmap representa-
tion (Fig. 6(a)) to its canonical representative with the compact bitmap
representation (Fig. 6(c)). When a warp visits a traversal and the aggre-

gate_pattern is called, the traversal is converted to the compact bitmap
representation using the dictionary, and the corresponding number is
used as the index for the local warp counters.

Local warp counters whose size is the number of canonical repre-
sentatives are possible only due to our fast mechanism to convert a
traversal to a compact bitmap representation using the pre-processed
dictionary. These dictionaries can be used in any dataset and appli-
cation that requires canonical relabeling (e.g., frequent subgraph min-
ing [16] and subgraph matching [22]), and we provide them as input
files for different 𝑘 values. To the best of our knowledge, this is the first
work to propose canonical relabeling on the GPU.

4.3. Warp-level load balancing

Our load-balancing mechanism decides when and how to perform
the workload redistribution. It is implemented on the CPU and is de-
picted by the Load Balancing box in Fig. 4. This layer communicates
asynchronously with the GPU by setting flags to indicate to the GPU’s
control phase when a device-wide synchronization step is required to
perform a load-balancing step. This is implemented through the func-
tions when_rebalance and how_rebalance depicted in Algorithm 10. Both
9

functions receive a DM_info argument containing a copy of the main
Journal of Parallel and Distributed Computing 191 (2024) 104903

Fig. 6. Conversion of subgraphs from bitmap representation (a) to their canon-
ical representatives (c).

GPU data structures and control flags. In the when_rebalance, the warps’
activity information is continuously read by the CPU (lines 2 and 10),
and if the number of idle warps is found to be higher than a thresh-
old (thr), the workload balancing is carried out (line 4). The GPU 𝑙𝑏
flag is set to true to inform warps that the execution should be inter-
rupted, and this flag is read by the Control phase on GPU. The CPU then
waits for the kernel (all warps) to finish and executes how_rebalance to
perform donations between warps. Given two warps 𝑤1 and 𝑤2, a do-

nation from 𝑤1 to 𝑤2 is the extraction of one active traversal from 𝑤1 ’s
queue of jobs and its insertion into 𝑤2 ’s queue of jobs. We say 𝑤1 is the
donator. Once rebalancing is completed, line 9 restarts the execution.

Algorithm 10: CPU code for load balancing.

1 𝑣𝑜𝑖𝑑 𝑤ℎ𝑒𝑛_𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝐷𝑀_𝑖𝑛𝑓𝑜 𝑔𝑝𝑢){
2 𝑓𝑙𝑎𝑔𝑠 ← 𝑔𝑝𝑢.𝑟𝑒𝑎𝑑_𝑓𝑙𝑎𝑔𝑠();
3 𝑤ℎ𝑖𝑙𝑒(𝑓𝑙𝑎𝑔𝑠.𝑎𝑐𝑡𝑖𝑣𝑒_𝑤𝑎𝑟𝑝𝑠 > 0):
4 𝑖𝑓 (𝑓𝑙𝑎𝑔𝑠.𝑖𝑑𝑙𝑒_𝑤𝑎𝑟𝑝𝑠 > 𝑡ℎ𝑟):
5 𝑔𝑝𝑢.𝑙𝑏 ← 𝑡𝑟𝑢𝑒;
6 𝑔𝑝𝑢.𝑤𝑎𝑖𝑡𝐾𝑒𝑟𝑛𝑒𝑙();
7 ℎ𝑜𝑤_𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝑔𝑝𝑢);
8 𝑔𝑝𝑢.𝑙𝑏 ← 𝑓𝑎𝑙𝑠𝑒;
9 𝑔𝑝𝑢.𝑟𝑢𝑛𝐾𝑒𝑟𝑛𝑒𝑙();

10 𝑓𝑙𝑎𝑔𝑠 ← 𝑔𝑝𝑢.𝑟𝑒𝑎𝑑_𝑓𝑙𝑎𝑔𝑠();
11 𝑣𝑜𝑖𝑑 ℎ𝑜𝑤_𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝐷𝑀_𝑖𝑛𝑓𝑜 𝑔𝑝𝑢){
12 𝑖𝑑𝑙𝑒𝑠 ← 𝑙𝑖𝑠𝑡(𝑔𝑝𝑢.𝑖𝑑𝑙𝑒𝑠);
13 𝑎𝑐𝑡𝑖𝑣𝑒𝑠 ← ℎ𝑒𝑎𝑝(𝑔𝑝𝑢.𝑎𝑐𝑡𝑖𝑣𝑒𝑠);
14 𝑡𝑜𝑡𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡 ← 𝑠𝑢𝑚_𝑤𝑒𝑖𝑔ℎ𝑡(𝑎𝑐𝑡𝑖𝑣𝑒𝑠);
15 𝑎𝑣𝑔_𝑤𝑒𝑖𝑔ℎ𝑡 ← 𝑡𝑜𝑡𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡∕|𝑤𝑎𝑟𝑝𝑠|;
16 𝑓𝑜𝑟(𝑖 ← 0 ; 𝑖 < 𝑑𝑜𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ; 𝑖 ++):
17 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ(𝑖𝑑𝑙𝑒 ∈ 𝑖𝑑𝑙𝑒𝑠):
18 𝑑𝑜𝑛𝑎𝑡𝑜𝑟 ← 𝑎𝑐𝑡𝑖𝑣𝑒𝑠.𝑝𝑜𝑝_ℎ𝑒𝑎𝑝();
19 𝑖𝑑𝑙𝑒.𝑗𝑜𝑏𝑠.𝑝𝑢𝑠ℎ(𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑑𝑜𝑛𝑎𝑡𝑜𝑟));
20 𝑖𝑓 (𝑑𝑜𝑛𝑎𝑡𝑜𝑟.𝑤𝑒𝑖𝑔ℎ𝑡 > 𝑎𝑣𝑔_𝑤𝑒𝑖𝑔ℎ𝑡):
21 𝑎𝑐𝑡𝑖𝑣𝑒𝑠.𝑝𝑢𝑠ℎ_ℎ𝑒𝑎𝑝(𝑑𝑜𝑛𝑎𝑡𝑜𝑟);

In our preliminary version of this work [18], the donation among
warps (ℎ𝑜𝑤_𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒) did not consider the cost of the jobs (traversals)
assigned to a warp and was only able to donate a single job among busy
and idle warps. Here, we improved this strategy with a redistribution
approach that selects several jobs from warp donators using informa-
tion from their current traversal and extensions, rather than picking
donators in a round-robin style.

The function how_rebalance depicts our new strategy. We create a
list of idle warps (line 12) and a max heap with the active ones (line
13). The criterion used in the heap ordering is the warp weight, which

is the sum of the size of its arrays of extensions (𝑇𝐸.𝑒𝑥𝑡). Once the total

Journal of Parallel and Distributed Computing 191 (2024) 104903S. Ferraz, V. Dias, C.H.C. Teixeira et al.

Table 3

Characteristics of datasets used for evaluation.

Dataset V(G) E(G) Avg. Deg. Density Max. Deg.

Citeseer [16] 3.2 K 4.5 K 2.77 8.51 × 10−4 99
ca-AstroPh [33] 18.7 K 198.1 K 21.10 1.12 × 10−3 504
Mico [16] 96.6 K 1.08 M 22.35 2.31 × 10−4 1359
com-DBLP [50] 317 K 1.04 M 6.62 2.08 × 10−5 343
soc-Pokec [50] 1.6 M 30.6 M 37.50 1.14 × 10−5 14854
com-LiveJournal [50] 3.9 M 34.6 M 17.35 4.34 × 10−6 14815

Table 4

Speedup as optimizations are activated in DuMato. Cells with “≥”: only the speedup baseline exceeded
24 hours. Cells with “-”: both variations exceeded 24 hours.

Impl. 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 7 𝑘 = 8 𝑘 = 9 𝑘 = 10

C
li

qu
e

ca
-A

st
r. DFS→ WC 22 62.1 100 83.8 86.1 97.5 ≥57.6 ≥10.2

WC→ WC_RRLB 0.1 0.5 1.3 4.4 14.2 28.3 44.4 61.2
WC_RRLB→ WC_JLB 0.9 0.9 0.9 1 1.1 1.1 1 1

M
ic

o DFS→ WC 12.7 57 76.3 ≥12.1 - - - -
WC→ WC_RRLB 0.8 2.5 9.2 17.1 ≥7.6 - - -
WC_RRLB→ WC_JLB 0.9 1.6 1.5 1.1 1 - - -

D
B

LP

DFS→ WC 14 30.3 46.6 54.9 64.3 ≥4.6 - -
WC→ WC_RRLB 0.1 0.5 4.9 22.3 48 76.5 ≥29.8 ≥2.8
WC_RRLB→ WC_JLB 1 0.9 1.1 1.3 1.2 1.1 1 1

Li
ve

Jr
. DFS→ WC 14.8 132.6 ≥54 - - - - -

WC→ WC_RRLB 2.4 1.4 2.5 ≥9.2 - - - -
WC_RRLB→ WC_JLB 1.7 1.3 2.8 1.2 - - - -

P
ok

ec DFS→ WC 19.3 69.1 84.9 91.5 152.1 382 436.2 363.3
WC→ WC_RRLB 4.8 2.5 1.9 1.6 1.3 1.1 1.5 2.5
WC_RRLB→ WC_JLB 2.8 2.6 2.1 2 1.7 2 2.1 2.1

M
ot

if
s

C
it

es
ee

r DFS→ WC 1 9 8.3 8.4 13.8 ≥7.1 - -
WC→ WC_RRLB 0.5 2 12.9 37 65.5 98.3 - -
WC_RRLB→ WC_JLB 0.2 0.3 0.5 1.2 1.6 1.3 - -

ca
-A

st
r. DFS→ WC 19.9 26.3 ≥14.7 - - - - -

WC→ WC_RRLB 0.9 6.8 36.8 ≥3.3 - - - -
WC_RRLB→ WC_JLB 1.3 1.8 1.2 1 - - - -

M
ic

o DFS→ WC 24 23.8 - - - - - -
WC→ WC_RRLB 1.3 11.9 ≥10.7 - - - - -
WC_RRLB→ WC_JLB 1.7 2.4 1.1 - - - - -

D
B

LP

DFS→ WC 14.9 20.3 19.7 - - - - -
WC→ WC_RRLB 0.4 3.6 21.3 ≥27.6 - - - -
WC_RRLB→ WC_JLB 1.3 2.5 2.2 1.2 - - - -
weight of active warps is computed, we calculate the average weight
(line 15), which will be used as a threshold (line 20) to decide whether
an active warp will donate extensions. Warps carry a list of traversals
to be processed, called jobs. Given an idle warp, we pop the active warp
with the highest weight (line 18), get one of its extensions, and push it
to the list of jobs of the idle warp. If the weight of the donator warp is
still higher than the average, it is pushed back to the heap (lines 20-21).
This strategy improves the previous round-robin approach, reducing the
number of calls to the load-balancing layer as the warps take longer to
get idle after balancing.

5. Experimental evaluation

This section evaluates the gains of each optimization proposed by
DuMato and compares it to the state-of-the-art GPM systems. To il-
lustrate, we use three GPM algorithms: clique counting, motif counting

and subgraph matching, presented in Section 4.2.2. Table 3 presents the
datasets employed. CPU experiments were conducted on a machine
with an Intel Xeon Silver 4108 CPU (16 threads with hyperthread-
ing), 48 GB of RAM, and Ubuntu 18.04. GPU experiments used an
NVIDIA TITAN V with 12 GB and CUDA 10.1. The time limit adopted for
each execution was 24 hours. Every execution was run three times and
demonstrated low variability (standard deviations in 0.06%-1.07%). Re-
sults for LiveJournal and Pokec for the motif counting application are
not presented because it exceeds the 24-hour limit even for small sub-
graph sizes (𝑘 > 4). Results for the clique counting application using
the Citeseer dataset are not presented because they are not representa-
tive, as this dataset contains a small number of cliques and all systems
10

enumerate them in a few milliseconds.
We have evaluated four versions (implementations) of DuMato that
vary according to the optimizations leveraged: DM_DFS in which each
GPU thread receives a traversal and calculates the enumeration using
the DFS; DM_WC in which GPU warps receives traversals for process-
ing and uses the DFS-wide traversal and the warp-centric workflow;
DM_WC_RRLB that includes load balancing and is the fastest version
from our previous work [18]; DM_WC_JLB that uses our new load-
balancing strategy (Section 4.3). The speedups as optimizations are
activated in DuMato are presented in Table 4 for the motif counting

and clique counting algorithms. We have varied the number of threads
used and balancing threshold to choose these parameters and the re-
sults shown that a value of 102,400 threads and a threshold of 30% led
to the best performance for most of our case. Details on this evaluation
are available in Section S1. As such, we have used these values for the
rest of the experiments.

5.1. Gains due to optimizations

The DM_DFS assigns traversals per thread that process them inde-
pendently. As it may result in a different execution path, threads within
a warp will diverge through the enumeration, deteriorating warp and
memory efficiency. Divergences are reduced and memory access pat-
tern is improved by the DM_WC version, which attains speedups up to
two orders of magnitude (e.e., Clique, LiveJournal and 𝑘 = 4) w.r.t. the
DM_DFS.

We have executed DM_DFS and DM_WC versions with the CUDA
NVProf profiling tool [10], which allowed us to measure the impacts
of our optimizations at the hardware level. The profiling results for the

DBLP dataset and 𝑘 up to 4 are shown in Table 5. Results for the other

Journal of Parallel and Distributed Computing 191 (2024) 104903S. Ferraz, V. Dias, C.H.C. Teixeira et al.

Table 5

DM_DFS vs DM_WC: execution and memory metrics.

App. 𝑘
Memory (load transactions) Execution (inst. per warp)
DM_DFS DM_WC Improvement DM_DFS DM_WC Improvement

Clique
3 618.1 M 212.7 M 2.9× 3.3 M 876.6 K 3.8×
4 6.7 B 852.4 M 7.9× 50.5 M 5.1 M 9.9×

Motifs
3 3.3 B 597.0 M 5.53× 17.5 M 2.6 M 7.36×
4 134.7 B 22.8 B 5.90× 1.9 B 143.2 M 13.3×
datasets are similar. Two categories of metrics (execution and mem-
ory) allow us to quantify DuMato’s effectiveness in using GPU’s massive
parallelism, execution, and memory hierarchy. The metric inst_per_warp

indicates the average number of instructions warps need to execute the
respective kernel. Our goal with the improvements in regularity is to
allow a lockstep execution within a warp, reducing the number of to-
tal instructions issued. The metrics gld_transactions quantifies the total
amount of global memory transactions needed to service read requests.
Our optimizations improve the memory access pattern, providing more
coalesced requests and reducing the number of transactions.

The execution efficiency of our warp-centric implementation is con-
firmed by the reduction in the total number of instructions per warp
needed by the DM_WC version, with improvements ranging from 3.8x
and 13.3x. These optimizations increased the amount of coalesced mem-
ory requests, thus reducing the total amount of memory transactions
from 2.9× to 7.9×.

The DM_WC_RRLB provided significant performance gains vs.
DM_WC, reaching speedups up to 98× (Motifs, Citeseer and k = 8).
The impact of load-balancing is more effective as 𝑘 increases. This hap-
pens because the load imbalance is higher in these cases due to the
skewness of real-world datasets. For more skewed datasets (Citeseer,
ca-AstroPh, and DBLP), the workload distribution becomes imbalanced
more quickly and our load-balancing strategy therefore attains higher
gains.

The DM_WC_JLB that donates multiple jobs per warp was first tuned
to set its number of donations to 16 (See Section S2 for details). As
shown in Table 4, it improves the DM_WC_RRLB performance in all
cases. More details on load balancing evaluation are available in Sec-
tion S3.

5.2. Comparison to other GPM systems

This section compares the best performing version of DuMato/DMT
(version including all optimizations: DM_WC_JLB) to the state-of-the-art
subgraph enumeration systems for GPU: G2Miner/G2M [7] (pattern-
aware and DFS), RPS/RPS [21] (pattern-aware and DFS) and Pan-
golin/PAN [9] (pattern-oblivious and BFS). We also compared Du-
Mato to the CPU systems Peregrine/PER [27] (pattern-aware) and
Fractal/FRA [13] (pattern-oblivious). All these systems represent dif-
ferent architectures, traversal strategies (BFS/DFS), and enumeration
paradigms (pattern-oblivious/pattern-aware).

The experimental results for the motif counting and clique count-
ing algorithms are presented in Table 6. We can observe that DuMato
can enumerate larger subgraphs than any other system. This is possible
due to the DFS-wide traversal strategy, which reduces the memory con-
sumption and mitigates the impacts of combinatorial explosion, thus
allowing the visitation of larger subgraphs using an affordable amount
of memory; the efficient load-balancing layer, which mitigates the load
imbalance as we increase 𝑘 and reduces the impacts of data skewness;
the flexibility in the choice of the enumeration paradigm, as the pattern-
oblivious allowed the visitation of several patterns in parallel up to
𝑘 = 8 (motif counting) without the need of thousands of exploration
plans, and the pattern-aware provided an optimized version of the ap-
plication relying on a single pattern (clique counting). Although Table 6
showed only subgraph sizes up 14, DuMato was able to reach subgraph
sizes up to 28 (Clique counting, Pokec dataset) in less than a minute.
11

To the best of our knowledge, subgraphs of such size have not been ex-
plored by any other enumeration system searching for exact outputs,
demonstrating our scalability and memory awareness.

Pangolin uses BFS, which materializes all the intermediate enu-
meration states and facilitates regular execution and load balancing,
providing good execution times for small enumerated subgraphs. How-
ever, as the size of the enumerated subgraphs increases, it crashes due
to its high-memory consumption caused by the combinatorial explosion
of intermediate enumeration states. Similarly to DuMato, Fractal uses
DFS and the pattern-oblivious enumeration paradigm, but it executes
on CPUs. DuMato attained consistent speedups w.r.t. Fractal in all exe-
cutions.

Peregrine is a pattern-aware DFS system, and we attained speedups
up to 105× when larger patterns are enumerated (motif application,
Citeseer dataset, and 𝑘 = 8). As we increase the size of the enumerated
subgraphs in the motif counting application, we also increase the num-
ber of valid patterns. This increase does not generate pre-processing
overheads to DuMato, as the pattern-oblivious strategy does not use
the patterns to guide the exploration. On the other hand, Peregrine
relies on exploration plans for each pattern, and this growth in the
number of patterns also increases its pre-processing costs to generate
the exploration plans. Additionally, as the motif counting searches for
all possible subgraphs, some of Peregrine’s exploration plans may not
generate valid subgraphs, wasting computational resources. Peregrine’s
best-case scenario is the enumeration of one specific pattern, and even
in this scenario (clique) we attained consistent speedups.

The reduction in the memory consumption of parallel subgraph enu-
meration in the exploration of larger subgraphs, along with the efficient
strategies for regular parallel processing, confirm our hypotheses that
subgraph enumeration on GPU must deal with irregularity and combi-
natorial explosion in order to design and implement GPM algorithms
efficiently on this architecture. Our efficient pattern-oblivious design
also allows the exploration of more patterns in parallel compared to the
state-of-the-art GPM systems.

For the comparison with the state-of-the-art frameworks we also
executed the subgraph matching application (Table 7). The patterns
used were quasi-cliques such that 𝑞𝑖 is a graph with 𝑖 vertices and
(𝑖 × (𝑖 − 1)∕2) − 1 edges. The exploration plan used was extracted from
the heuristic proposed by Fractal [13]. G2Miner, Pangolin, and RPS
could not generate functional GPU kernels to execute for any of these
patterns. Thus, their results are not presented. G2Miner provides a
code generator to create new GPU kernels for specific patterns, but
it does not generate functional GPU code for new patterns. Pangolin
is a pattern-oblivious system that does not provide an implementation
for subgraph matching. In order to match a new pattern, RPS needs
the set of symmetry-breaking rules needed for the pattern. However,
the symmetry-breaking rules needed to break automorphism depend
on the exploration plan, and none of the symmetry-breaking rules
we provided could execute RPS properly. DuMato presents significant
speedups, achieving higher speedups as we increase the size of the pat-
terns. For example, there is a small increase in the execution time of
DuMato from 𝑞9 to 𝑞10 in the Pokec dataset, while the other systems are
more impacted, showing the scalability of our strategies as we increase
𝑘.

6. Conclusion and future work

In this work, we propose novel strategies to mitigate the main chal-

lenges for efficient subgraph enumeration on GPUs: irregularity, which

Journal of Parallel and Distributed Computing 191 (2024) 104903S. Ferraz, V. Dias, C.H.C. Teixeira et al.

Table 6

Execution time (seconds) of DuMato and baselines (GPU and CPU). Cells with “-”: exceeded 24 hours. “ERR”: errors during execution. “NS”: not
supported. “OOM”: out-of-memory. “INC”: finished with incomplete results.

𝑘 = 3 4 5 6 7 8 9 10 11 12 13 14

M
ot

if
s

C
it

es
ee

r
DMT 0.11 0.12 0.24 0.67 5.06 96.95 - - - - - -
G2M 0.01 ERR NS NS NS NS NS NS NS NS NS NS
PAN 0.01 0.01 INC OOM OOM OOM OOM OOM OOM OOM OOM OOM
PER 0.01 0.01 0.05 3.47 537.66 - - NS NS NS NS NS
FRA 5.17 5.20 5.69 12.44 163.48 - - - - - - -

ca
-A

st
ro

ph

DMT 0.25 1.47 126.78 23.62 K - - - - - - - -
G2M 0.01 0.05 NS NS NS NS NS NS NS NS NS NS
PAN 0.01 0.21 INC OOM OOM OOM OOM OOM OOM OOM OOM OOM
PER 0.01 0.57 132.90 52.80 K - - - - - - - -
FRA 9.13 435.64 4.72 K - - - - - - - - -

M
ic

o

DMT 0.47 23.27 7.62 K - - - - - - - - -
G2M 0.01 0.84 NS NS NS NS NS NS NS NS NS NS
PAN 0.01 3.31 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
PER 0.06 6.57 7.92 K - - - - - - - - -
FRA 16.43 474.46 - - - - - - - - - -

D
B

LP

DMT 0.13 1.11 31.90 2.64 K - - - - - - - -
G2M 0.01 0.84 NS NS NS NS NS NS NS NS NS NS
PAN 0.01 0.17 INC OOM OOM OOM OOM OOM OOM OOM OOM OOM
PER 0.07 0.95 78.59 50.95 K - - - - - - - -
FRA 14.33 37.62 1.43 K - - - - - - - - -

C
li

qu
e

ca
-A

st
ro

ph

DMT 0.13 0.15 0.43 0.86 2.19 7.82 32.48 137.04 561.12 2.13 K 7.44 K 24.57 K

G2M 0.01 0.01 0.01 0.08 0.68 5.01 NS NS NS NS NS NS
RPS 0.02 0.04 0.17 1.85 NS NS NS NS NS NS NS NS
PAN 0.01 0.01 0.02 0.11 0.61 OOM OOM OOM OOM - - -
PER 0.01 0.10 0.83 6.38 43.56 272.42 1.55 K 7.93 K 36.26 K - - -
FRA 8.17 9.75 15.89 78.09 439.16 2.30 K 12.89 K 57.02 K - - - -

M
ic

o

DMT 0.31 1.08 13.93 373.14 10.91 K - - - - - - -
G2M 0.01 0.02 0.74 31.98 1.16 K 39.58 K NS NS NS NS NS NS
RPS 0.11 0.37 14.59 953.00 NS NS NS NS NS NS NS NS
PAN 0.01 0.05 2.93 OOM - - - - - - - -
PER 0.09 1.81 82.67 3.66 K - - - - - - - -
FRA 14.17 48.53 1.44 K 56.72 K - - - - - - - -

D
B

LP

DMT 0.13 0.29 0.47 2.09 19.49 229.52 2.77 K 29.90 K - - - -
G2M 0.01 0.01 0.02 0.37 8.16 148.23 NS NS NS NS NS NS
RPS 0.04 0.07 0.24 3.62 NS NS NS NS NS NS NS NS
PAN 0.01 0.01 0.03 0.50 OOM OOM OOM OOM OOM OOM OOM OOM
PER 0.11 0.16 1.36 25.92 531.88 9.35 K - - - - - -
FRA 13.44 14.32 22.72 186.97 2.52 K 35.51 K - - - - - -

Li
ve

Jo
u
rn

al

DMT 4.70 22.91 232.53 8.00 K - - - - - - - -
G2M 0.02 0.21 6.39 318.98 14.95 K - NS NS NS NS NS NS
RPS 2.16 6.18 154.78 9.63 K NS NS NS NS NS NS NS NS
PAN 0.01 0.53 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
PER 3.91 26.66 1.06 K 64.74 K - - - - - - - -
FRA 394.85 901.05 16.06 K - - - - - - - - -

P
ok

ec

DMT 1.44 2.91 4.97 6.32 8.84 9.32 11.32 13.03 17.45 17.88 19.56 23.38

G2M 0.01 0.03 0.06 0.10 0.18 0.39 NS NS NS NS NS NS
RPS 1.79 3.16 4.44 5.97 NS NS NS NS NS NS NS NS
PAN 0.06 0.21 0.30 0.39 0.52 ERR ERR ERR ERR ERR ERR ERR
PER 2.46 6.93 14.19 24.61 39.93 61.94 93.85 144.47 221.63 344.19 546.65 838.45
FRA 172.41 212.27 293.00 495.62 577.57 812.94 1.03 K 1.52 K 1.70 K 1.96 K 2.26 K 2.42 K
limits the use of GPU’s massive parallelism and HBRAM; combinatorial
explosion, which creates high memory demands and limits the scalabil-
ity of GPM algorithms; flexibility in the enumeration paradigm, as the
tradeoff between using these paradigms is hard to quantify and current
GPU solutions support either pattern-oblivious or pattern-aware. Our
DFS-wide traversal strategy provides a good tradeoff between memory
locality and low memory consumption for the intermediate enumera-
tion states, thus improving the efficiency in accessing GPU’s HBRAM
and reducing the impacts of combinatorial explosion.

Our warp-centric enumeration workflow uses the DFS-wide data
structures to implement subgraph enumeration through efficient SIMD/
SISD lockstep phases, reducing divergences and improving GPU’s
HBRAM efficiency through memory coalescence. In this work, we refac-
tored the enumeration phases using three efficient warp-centric core
primitives (find_one, find_many, and write). This not only improved the
system’s comprehensiveness but also allowed the removal of the com-
paction phase from the enumeration workflow.

Our load-balancing strategies mitigate the imbalance caused by the
12

irregular processing during the parallel subgraph enumeration. We pro-
posed a lightweight warp-level layer performed by the CPU, which
monitors GPU occupancy to rebalance when utilization is low. Two cus-
tom functions must be provided to this layer: when_rebalance, which uses
a threshold to infer when GPU is idle and a workload redistribution is
necessary; how_rebalance, which improves our previous strategy to re-
distribute enumeration jobs considering the weight of each warp. Jobs
are now extracted from the heaviest warps, thus allowing a better load
balancing than our previous round-robin strategy. Furthermore, warps
receive several jobs in a rebalancing, increasing the GPU occupancy and
reducing the calls to the load-balancing layer.

Our general-purpose subgraph enumeration system (DuMato) uses
our novel strategies to allow efficient implementations of GPM algo-
rithms on GPUs using high-level primitives and an adaptive execution
workflow. To the best of our knowledge, DuMato is the first sys-
tem to support both enumeration paradigms (pattern-oblivious/pattern-
aware), allowing the users to understand and exploit the best-case sce-
nario of each paradigm and achieve better performance results.

In the future, we plan to improve the efficiency of the warp-centric

enumeration phases by splitting physical warps into virtual ones (sub-

Journal of Parallel and Distributed Computing 191 (2024) 104903S. Ferraz, V. Dias, C.H.C. Teixeira et al.

Table 7

Execution time (seconds) of DuMato and baselines (GPU and CPU) for the subgraph match-
ing application.

System 𝑞4 𝑞5 𝑞6 𝑞7 𝑞8 𝑞9 𝑞10

C
it

es
ee

r DuMato 0.11 0.13 0.13 0.14 ∅ ∅ ∅
Peregrine 0.01 0.01 0.01 0.19 ∅ ∅ ∅
Fractal 1.78 1.84 1.78 2.05 ∅ ∅ ∅

ca
-A

st
r. DuMato 0.15 0.46 1.59 6.48 34.04 181.45 924.89

Peregrine 0.02 0.30 2.78 23.04 165.11 1.23 K 16.83 K
Fractal 5.05 17.25 140.05 1.26 K 8.35 K 62.10 K −

M
ic

o DuMato 0.74 7.48 234.49 9.64 K − − −
Peregrine 0.15 5.85 321.27 14.71 K − − −
Fractal 39.59 2.80 K − − − − −

D
B

LP

DuMato 0.15 0.50 3.90 53.56 846.29 12.07 K −
Peregrine 0.10 0.34 3.44 73.22 1.54 K 26.85 K −
Fractal 9.52 35.58 759.04 18.28 K − − −

Li
ve

Jr
. DuMato 10.36 172.09 4.22 K − − − −

Peregrine 5.63 76.00 3.32 K − − − −
Fractal 672.82 39.58 K − − − − −

P
ok

ec DuMato 2.21 9.94 14.09 17.34 19.50 21.64 27.67
Peregrine 3.30 10.28 20.55 35.11 57.80 281.19 11.38 K
Fractal 182.09 242.56 371.92 495.40 749.39 1.18 K 1.61 K
warps). This will enable us to modulate subwarps sizes dynamically
according to the sizes of neighborhoods, which should improve warp
execution efficiency when visiting the adjacency lists while generating
extensions. We also plan extending our system with a multi-GPU version
to accelerate it further. Another promising direction for future work
refers to the investigation of novel approaches for load balancing in the
domain, given the high impact of this optimization to the performance.
As such, we expect to compare our approaches to those proposed in the
STMatch [48] that, differently from DuMato, performs stealing within
and across threadbloks inside the GPU. The STMatch strategies could
also benefit from our weighted task redistribution, leading to novel ap-
proaches.

CRediT authorship contribution statement

Samuel Ferraz: Conceptualization, Data curation, Investigation,
Methodology, Project administration, Software, Supervision, Valida-
tion, Visualization, Writing – original draft, Writing – review & editing.
Vinicius Dias: Conceptualization, Formal analysis, Methodology, Writ-
ing – original draft, Writing – review & editing. Carlos H.C. Teixeira:

Conceptualization. Srinivasan Parthasarathy: Conceptualization, For-
mal analysis, Writing – original draft. George Teodoro: Conceptualiza-
tion, Methodology, Supervision, Writing – original draft, Writing – re-
view & editing. Wagner Meira: Conceptualization, Funding acquisition,
Methodology, Project administration, Resources, Supervision, Writing –
original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This study was partially funded by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance
Code 001, CAPES/CNPq (grants 407108/2022-0 and 313017/2022-
0), FAPEMIG (grants APQ-00161-20 and PPE-00030-21), CNPq-AWS
(grants 400070/2023-5 and 440088/2020-8), and PROCAD/UFMG.
Srinivasan Parthasarathy would like to acknowledge support from Na-
tional Science Foundation (USA) under grants CNS-2112471 and OAC-
2018627. Any opinions, findings, and conclusions in this material are
those of the author(s) and may not reflect the views of the respective
13

funding agencies.
Appendix A. Supplementary material

Supplementary material related to this article can be found online
at https://doi .org /10 .1016 /j .jpdc .2024 .104903.

References

[1] E. Abdelhamid, I. Abdelaziz, P. Kalnis, Z. Khayyat, F. Jamour, Scalemine: scalable
parallel frequent subgraph mining in a single large graph, in: Proceedings of the In-
ternational Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’16, IEEE Press, Piscataway, NJ, USA, 2016, pp. 61:1–61:12, http://
dl .acm .org /citation .cfm ?id =3014904 .3014986.

[2] M. Almasri, I.E. Hajj, R. Nagi, J. Xiong, W.-m. Hwu, Parallel k-clique counting on
gpus, in: Proceedings of the 36th ACM International Conference on Supercomputing,
ICS ’22, Association for Computing Machinery, New York, NY, USA, 2022.

[3] F. Bi, L. Chang, X. Lin, L. Qin, W. Zhang, Efficient subgraph matching by postponing
cartesian products, in: SIGMOD ’16, Association for Computing Machinery, New
York, NY, USA, 2016, pp. 1199–1214.

[4] B. Bringmann, S. Nijssen, What is frequent in a single graph?, in: T. Washio, E.
Suzuki, K.M. Ting, A. Inokuchi (Eds.), Advances in Knowledge Discovery and Data
Mining, Springer, Berlin, Heidelberg, 2008, pp. 858–863.

[5] G. Buehrer, S. Parthasarathy, Y. Chen, Adaptive parallel graph mining for CMP ar-
chitectures, in: Proceedings of the 6th IEEE International Conference on Data Mining
(ICDM 2006), 18-22 December 2006, Hong Kong, China, IEEE Computer Society,
2006, pp. 97–106.

[6] G. Buehrer, S. Parthasarathy, M. Goyder, Data mining on the cell broadband en-
gine, in: P. Zhou (Ed.), Proceedings of the 22nd Annual International Conference
on Supercomputing, ICS 2008, Island of Kos, Greece, June 7-12, 2008, ACM, 2008,
pp. 26–35.

[7] X. Chen, Arvind, efficient and scalable graph pattern mining on GPUs, in: 16th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 22),
USENIX Association, Carlsbad, CA, 2022, pp. 857–877, https://www .usenix .org /
conference /osdi22 /presentation /chen.

[8] H. Chen, M. Liu, Y. Zhao, X. Yan, D. Yan, J. Cheng G-miner, An efficient task-
oriented graph mining system, in: Proceedings of the Thirteenth EuroSys Confer-
ence, EuroSys ’18, Association for Computing Machinery, New York, NY, USA, 2018.

[9] X. Chen, R. Dathathri, G. Gill, K. Pingali, Pangolin: an efficient and flexible graph
mining system on cpu and gpu, Proc. VLDB Endow. (2020).

[10] N. Corporation, Toolkit documentation, https://docs .nvidia .com /cuda /profiler -
users -guide /index .html, 2022.

[11] M. Danisch, O. Balalau, M. Sozio, Listing k-cliques in sparse real-world graphs*,
in: Proceedings of the 2018 World Wide Web Conference, WWW ’18, International
World Wide Web Conferences Steering Committee, Republic and Canton of Geneva,
Switzerland, 2018, pp. 589–598.

[12] M. Danisch, O. Balalau, M. Sozio, Listing k-cliques in sparse real-world graphs, in:
WWW ’18, 2018.

[13] V. Dias, C.H.C. Teixeira, D. Guedes, W. Meira, S. Parthasarathy, Fractal: a general-
purpose graph pattern mining system, in: SIGMOD ’19, 2019.

[14] V. Dodeja, M. Almasri, R. Nagi, J. Xiong, W. mei Hwu, PARSEC: PARallel subgraph
enumeration in CUDA, in: 2022 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), IEEE, 2022.

[15] A. Duma, A. Topirceanu, A network motif based approach for classifying online
social networks, in: SACI ’14, 2014.

[16] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, P. Kalnis, Grami: frequent subgraph

and pattern mining in a single large graph, Proc. VLDB Endow. (2014).

https://doi.org/10.1016/j.jpdc.2024.104903
http://dl.acm.org/citation.cfm?id=3014904.3014986
http://dl.acm.org/citation.cfm?id=3014904.3014986
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib41C49F1C8872BF0DACDF4227A1BB17FAs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib41C49F1C8872BF0DACDF4227A1BB17FAs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib41C49F1C8872BF0DACDF4227A1BB17FAs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib638668282D5785D967820384F0595C23s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib638668282D5785D967820384F0595C23s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib638668282D5785D967820384F0595C23s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibC06964366E66C500FEAA7EFA0F80B40Bs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibC06964366E66C500FEAA7EFA0F80B40Bs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibC06964366E66C500FEAA7EFA0F80B40Bs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibD2D9D29490B5EF28314C6A1C494EF694s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibD2D9D29490B5EF28314C6A1C494EF694s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibD2D9D29490B5EF28314C6A1C494EF694s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibD2D9D29490B5EF28314C6A1C494EF694s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib90A98D7B8F7A5F07A1070004F0FE409Fs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib90A98D7B8F7A5F07A1070004F0FE409Fs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib90A98D7B8F7A5F07A1070004F0FE409Fs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib90A98D7B8F7A5F07A1070004F0FE409Fs1
https://www.usenix.org/conference/osdi22/presentation/chen
https://www.usenix.org/conference/osdi22/presentation/chen
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib9871F8E53C2016A18FD62C2DA5CF1AD4s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib9871F8E53C2016A18FD62C2DA5CF1AD4s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib9871F8E53C2016A18FD62C2DA5CF1AD4s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibD4B2C44B7C38D3210233667DD9C2038Es1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibD4B2C44B7C38D3210233667DD9C2038Es1
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib3F8F9D6CCCD0589943E12CB1DA0286EBs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib3F8F9D6CCCD0589943E12CB1DA0286EBs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib3F8F9D6CCCD0589943E12CB1DA0286EBs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib3F8F9D6CCCD0589943E12CB1DA0286EBs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib58CF8ACDB290991A9AC33698C60E1F6Fs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib58CF8ACDB290991A9AC33698C60E1F6Fs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibEFB99FD145EF256A4F2EBECBDFA5E532s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibEFB99FD145EF256A4F2EBECBDFA5E532s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib4DA2E4A4F4C03117816EE8C7A89144DEs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib4DA2E4A4F4C03117816EE8C7A89144DEs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib4DA2E4A4F4C03117816EE8C7A89144DEs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib3BA40EE546CEFF58FD6BC107B7E31C6Ds1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib3BA40EE546CEFF58FD6BC107B7E31C6Ds1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibD67992B30900B23920DE33D8FF946006s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibD67992B30900B23920DE33D8FF946006s1

Journal of Parallel and Distributed Computing 191 (2024) 104903S. Ferraz, V. Dias, C.H.C. Teixeira et al.

[17] D. Eppstein, M. Löffler, D. Strash, Listing all maximal cliques in large sparse real-
world graphs, ACM J. Exp. Algorithmics 18 (Nov. 2013), https://doi .org /10 .1145 /
2543629.

[18] S. Ferraz, V. Dias, C.C. Teixeira, G. Teodoro, W. Meira, Efficient strategies for
graph pattern mining algorithms on gpus, in: 2022 IEEE 34th International Sym-
posium on Computer Architecture and High Performance Computing (SBAC-PAD),
IEEE Computer Society, Los Alamitos, CA, USA, 2022, pp. 110–119, https://
doi .ieeecomputersociety .org /10 .1109 /SBAC -PAD55451 .2022 .00022.

[19] C. Gui, X. Liao, L. Zheng, P. Yao, Q. Wang, H. Jin, Sumpa: efficient pattern-centric
graph mining with pattern abstraction, in: PACT ’21, 2021, pp. 318–330.

[20] W. Guo, Y. Li, M. Sha, B. He, X. Xiao, K.-L. Tan, Gpu-accelerated subgraph enumera-
tion on partitioned graphs, in: Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’20, Association for Computing Ma-
chinery, New York, NY, USA, 2020, pp. 1067–1082.

[21] W. Guo, Y. Li, K. Tan, Exploiting reuse for gpu subgraph enumeration, IEEE Trans.
Knowl. Data Eng. 34 (09) (2020) 4231–4244, https://doi .org /10 .1109 /TKDE .2020 .
3035564.

[22] W. Guo, Y. Li, M. Sha, B. He, X. Xiao, K.-L. Tan, Gpu-accelerated subgraph enumer-
ation on partitioned graphs, in: SIGMOD, 2020.

[23] W.-S. Han, J. Lee, J.-H. Lee Turboiso, Towards ultrafast and robust subgraph isomor-
phism search in large graph databases, in: Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’13, Association for
Computing Machinery, New York, NY, USA, 2013, pp. 337–348.

[24] S. Hong, S.K. Kim, T. Oguntebi, K. Olukotun, Accelerating cuda graph algorithms at
maximum warp, in: PPoPP ’11, 2011.

[25] B. Hooi, K. Shin, H. Lamba, C. Faloutsos, Telltail: fast scoring and detection of dense
subgraphs, in: AAAI ’20, 2020.

[26] Y. Hu, H. Liu, H.H. Huang, Tricore: parallel triangle counting on gpus, in: Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage, and Analysis, SC ’18, IEEE Press, 2018.

[27] K. Jamshidi, R. Mahadasa, K. Vora, Peregrine: a pattern-aware graph mining system,
in: EuroSys ’20, 2020.

[28] G. Jiang, Q. Zhou, T. Jin, B. Li, Y. Zhao, Y. Li, J. Cheng, Vsgm: view-based gpu-
accelerated subgraph matching on large graphs, in: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, SC
’22, IEEE Press, 2022.

[29] T. Junttila, P. Kaski, Engineering an efficient canonical labeling tool for large and
sparse graphs, in: D. Applegate, G.S. Brodal, D. Panario, R. Sedgewick (Eds.), Pro-
ceedings of the Ninth Workshop on Algorithm Engineering and Experiments and
the Fourth Workshop on Analytic Algorithms and Combinatorics, SIAM, 2007,
pp. 135–149.

[30] R. Kessl, N. Talukder, P. Anchuri, M. Zaki, Parallel graph mining with gpus, in:
W. Fan, A. Bifet, Q. Yang, P.S. Yu (Eds.), Proceedings of the 3rd International
Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms,
Systems, Programming Models and Applications, in: Proceedings of Machine Learn-
ing Research, vol. 36, PMLR, New York, New York, USA, 2014, pp. 1–16, https://
proceedings .mlr .press /v36 /kessl14 .html.

[31] H. Kim, J. Lee, S.S. Bhowmick, W.-S. Han, J. Lee, S. Ko, M.H. Jarrah, Dualsim: paral-
lel subgraph enumeration in a massive graph on a single machine, in: SIGMOD ’16,
Association for Computing Machinery, New York, NY, USA, 2016, pp. 1231–1245.

[32] L. Lai, L. Qin, X. Lin, Y. Zhang, L. Chang, S. Yang, Scalable distributed subgraph enu-
meration, Proc. VLDB Endow. 10 (3) (2016) 217–228, https://doi .org /10 .14778 /
3021924 .3021937.

[33] J. Leskovec, J. Kleinberg, C. Faloutsos, Graph evolution: densification and shrinking
diameters, ACM Trans. Knowl. Discov. Data (2007).

[34] W. Lin, X. Xiao, X. Xie, X. Li, Network motif discovery: a gpu approach, in: ICDE
’15, 2015.

[35] G. Liu, L. Wong, Effective pruning techniques for mining quasi-cliques, in: ECMLP-
KDD ’08, 2008.

[36] Z. Lu, J. Wahlström, Community detection in complex networks via clique conduc-
tance, Sci. Rep. 8 (04) (2018), https://doi .org /10 .1038 /s41598 -018 -23932 -z.

[37] D. Mawhirter, B. Wu, Automine: harmonizing high-level abstraction and high per-
formance for graph mining, in: SOSP ’19, 2019.

[38] D. Mawhirter, S. Reinehr, C. Holmes, T. Liu, B. Wu, Graphzero: a high-performance
subgraph matching system, SIGOPS Oper. Syst. Rev. (2021).

[39] B.D. McKay, A. Piperno, Practical graph isomorphism, ii, J. Symb. Comput. (2014).
[40] P. Ribeiro, F. Silva, G-tries: a data structure for storing and finding subgraphs, Data

Min. Knowl. Discov. 28 (2) (2014) 337–377, https://doi .org /10 .1007 /s10618 -013 -
0303 -4.

[41] R.A. Rossi, N.K. Ahmed, The network data repository with interactive graph analyt-
ics and visualization, in: AAAI, 2015, https://networkrepository .com.

[42] T. Shi, M. Zhai, Y. Xu, J. Zhai Graphpi, High performance graph pattern matching
through effective redundancy elimination, in: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis, SC ’20,
IEEE Press, 2020.

[43] O. Sporns, R. Kötter, Motifs in brain networks, PLoS Biol. (2004).
[44] S. Sun, Y. Che, L. Wang, Q. Luo, Efficient parallel subgraph enumeration on a single

machine, in: 2019 IEEE 35th International Conference on Data Engineering (ICDE),
IEEE, 2019.

[46] H.-N. Tran, J.-j. Kim, B. He, Fast subgraph matching on large graphs using graph-
ics processors, in: M. Renz, C. Shahabi, X. Zhou, M.A. Cheema (Eds.), Database
Systems for Advanced Applications, Springer International Publishing, Cham, 2015,
pp. 299–315.

[47] K. Wang, Z. Zuo, J. Thorpe, T.Q. Nguyen, G.H. Xu, Rstream: marrying relational
algebra with streaming for efficient graph mining on a single machine, in: OSDI’18,
2018.

[48] Y. Wei, P. Jiang, Stmatch: accelerating graph pattern matching on gpu with stack-
based loop optimizations, in: SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis, 2022, pp. 1–13.

[49] D. Yan, G. Guo, M.M. Rahman Chowdhury, M. Tamer Özsu, W.-S. Ku, J.C.S. Lui, G-
thinker: a distributed framework for mining subgraphs in a big graph, in: 2020 IEEE
36th International Conference on Data Engineering (ICDE), 2020, pp. 1369–1380.

[50] J. Yang, J. Leskovec, Defining and evaluating network communities based on
ground-truth, in: MDS ’12, 2012.

[51] X. Yang, S. Parthasarathy, P. Sadayappan, Fast sparse matrix-vector multiplication
on gpus: implications for graph mining, Proc. VLDB Endow. 4 (4) (2011) 231–242.

[52] C. Zhao, Z. Zhang, P. Xu, T. Zheng, J. Guo, Kaleido: an efficient out-of-core graph
mining system on a single machine, in: ICDE ’20, 2020, pp. 673–684.

Samuel Ferraz received his Ph.D. in Computer Science from
the Universidade Federal de Minas Gerais (UFMG), Brazil, in
2023. He is an Associate Professor of the Computer Science De-
partment at Universidade Federal de Mato Grosso do Sul (UFMS),
Brazil. His research interests include high-performance comput-
ing on GPUs and graph mining.

Vinícius Dias is an Associate Professor of the Computer
Science Department at Universidade Federal de Lavras (UFLA),
Brazil. He received his Ph.D. in Computer Science from the Uni-
versidade Federal de Minas Gerais (UFMG), Belo Horizonte, in
2023. He also holds a M.Sc. in Computer Science from UFMG, in
2016, and a Bachelor degree from the Universidade Federal de
Uberlândia, Brazil, in 2013. His research interests include per-
formance of parallel and distributed systems, data mining, graph
mining and machine learning with graphs.

Carlos Teixeira received his Ph.D. from the Computer
Science Department at Universidade Federal de Minas Gerais
(UFMG), Brazil, in 2022. He also earned both his bachelor’s de-
gree (2009) and master’s degree (2011) in Computer Science
from the same institution. He was a research associate at Qatar
Computing Research Institute (2015) and visiting scholar at The
Ohio State University (2009) and Purdue University (2016). His
research is focused on data mining algorithms, machine learning,
sampling methods, and data science.

Srinivasan Parthasarathy received the PhD degree from
the Department of Computer Science, University of Rochester,
Rochester, NY, in 1999. He is currently a professor with the Com-
puter Science and Engineering Department, and the Biomedical
Informatics Department, The Ohio State University. His research
interests include high performance data analytics, graph ana-
lytics and network science, and machine learning and database
systems. He is a Fellow of the IEEE, the AAIA, the Risk Institute
and a Distinguished Fellow of the Robert Bosch Center for Data
Science and AI.

George Teodoro received his M.Sc. and Ph.D. degrees in
Computer Science from the Universidade Federal de Minas Gerais
(UFMG), Brazil, in 2006 and 2010. He is professor at the De-
partment of Computer Science at Universidade Federal de Mi-
nas Gerais. His primary areas of expertise include high perfor-
mance runtime systems for efficient execution of biomedical,
data-mining, and multimedia applications on distributed hetero-
geneous environments.

Wagner Meira Jr. obtained his Ph.D. from the University of
Rochester, NY, in 1997 and is currently Professor of Computer
Science at Universidade Federal de Minas Gerais, Brazil. He has
published more than 300 papers in top venues and is co-author
of the books Data Mining and Analysis — Fundamental Concepts
and Algorithms, and Data Mining and Machine Learning – Funda-
mental Concepts and Algorithms, both published by Cambridge
University Press in 2014 and 2020, respectively. His research
focuses on scalability and efficiency of large scale parallel and
distributed systems, from massively parallel to Internet-based

platforms, and on data mining algorithms, their parallelization, and application to ar-
14

[45] C.H.C. Teixeira, A.J. Fonseca, M. Serafini, G. Siganos, M.J. Zaki, A. Aboulnaga,
Arabesque: a system for distributed graph mining, in: SOSP ’15, 2015.
eas such as information retrieval, bioinformatics, cybersecurity, and health.

https://doi.org/10.1145/2543629
https://doi.org/10.1145/2543629
https://doi.ieeecomputersociety.org/10.1109/SBAC-PAD55451.2022.00022
https://doi.ieeecomputersociety.org/10.1109/SBAC-PAD55451.2022.00022
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib3E954AE945DDEEE4B378CFF47B0BEDE0s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib3E954AE945DDEEE4B378CFF47B0BEDE0s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibC523320110355996CFEAD1B01AC9EE0As1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibC523320110355996CFEAD1B01AC9EE0As1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibC523320110355996CFEAD1B01AC9EE0As1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibC523320110355996CFEAD1B01AC9EE0As1
https://doi.org/10.1109/TKDE.2020.3035564
https://doi.org/10.1109/TKDE.2020.3035564
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib81DCC0C5E8A6FD30D23EBE2988FE6D71s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib81DCC0C5E8A6FD30D23EBE2988FE6D71s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib752EFC86A2503B31A4B78F5F1BE60637s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib752EFC86A2503B31A4B78F5F1BE60637s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib752EFC86A2503B31A4B78F5F1BE60637s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib752EFC86A2503B31A4B78F5F1BE60637s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibA2A70D94CBFE745DA4AB5ED803A80C56s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibA2A70D94CBFE745DA4AB5ED803A80C56s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib1D3770340F0F440395AD2DD7CEDCD841s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib1D3770340F0F440395AD2DD7CEDCD841s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib79AAB52AED076311FC7674F3D482B40Es1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib79AAB52AED076311FC7674F3D482B40Es1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib79AAB52AED076311FC7674F3D482B40Es1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib8A63FC617583772232130B494403C7B9s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib8A63FC617583772232130B494403C7B9s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib832A3ABB87E63CA1760F9C7A84B26B03s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib832A3ABB87E63CA1760F9C7A84B26B03s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib832A3ABB87E63CA1760F9C7A84B26B03s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib832A3ABB87E63CA1760F9C7A84B26B03s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibD8FA591C60ED1E1AFEBA1FAA2E83EA22s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibD8FA591C60ED1E1AFEBA1FAA2E83EA22s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibD8FA591C60ED1E1AFEBA1FAA2E83EA22s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibD8FA591C60ED1E1AFEBA1FAA2E83EA22s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibD8FA591C60ED1E1AFEBA1FAA2E83EA22s1
https://proceedings.mlr.press/v36/kessl14.html
https://proceedings.mlr.press/v36/kessl14.html
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibDD4032707AB381201C53B98C91932BDFs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibDD4032707AB381201C53B98C91932BDFs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibDD4032707AB381201C53B98C91932BDFs1
https://doi.org/10.14778/3021924.3021937
https://doi.org/10.14778/3021924.3021937
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib84BBF20C19214C9DEBF2611FDADF337Bs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib84BBF20C19214C9DEBF2611FDADF337Bs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibED58A2102B58F7180685A3B1D305AF14s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibED58A2102B58F7180685A3B1D305AF14s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib35FA81DE7913B6EC37B94DDCB3438E63s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib35FA81DE7913B6EC37B94DDCB3438E63s1
https://doi.org/10.1038/s41598-018-23932-z
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibC5E1D1CAB6B8ACE010A88E5DD42884F2s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibC5E1D1CAB6B8ACE010A88E5DD42884F2s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibA7E9774B21FFB8DA218CF2A844359FADs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibA7E9774B21FFB8DA218CF2A844359FADs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib5C8E4E5FE61091C1BECEAA701E916491s1
https://doi.org/10.1007/s10618-013-0303-4
https://doi.org/10.1007/s10618-013-0303-4
https://networkrepository.com
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib42F08D817A35FE714501816EA781D82Ds1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib42F08D817A35FE714501816EA781D82Ds1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib42F08D817A35FE714501816EA781D82Ds1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib42F08D817A35FE714501816EA781D82Ds1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib0F44861A9DBF753BFDFAB485EBEF789Cs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib969514244C9791CC32FDAA7B3805D6B0s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib969514244C9791CC32FDAA7B3805D6B0s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib969514244C9791CC32FDAA7B3805D6B0s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib0EA26ED6BE8150C2F1178572B4881D0As1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib0EA26ED6BE8150C2F1178572B4881D0As1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibF569EE2121ADC0464F4F7B65DF01D802s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibF569EE2121ADC0464F4F7B65DF01D802s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibF569EE2121ADC0464F4F7B65DF01D802s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibF569EE2121ADC0464F4F7B65DF01D802s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibC7503DCCA89DBFBC0F526BED294C802As1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibC7503DCCA89DBFBC0F526BED294C802As1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibC7503DCCA89DBFBC0F526BED294C802As1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibC783948C5B2BD1DEA90614C0F1C089D5s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibC783948C5B2BD1DEA90614C0F1C089D5s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibC783948C5B2BD1DEA90614C0F1C089D5s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibA2B8405A3B97218A83EF3E66015B6E1Es1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibA2B8405A3B97218A83EF3E66015B6E1Es1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bibA2B8405A3B97218A83EF3E66015B6E1Es1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib2ABD3B97BE83F63DED4259D01968F1B0s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib2ABD3B97BE83F63DED4259D01968F1B0s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib5F9C2C1D78749F7C60A0DA471F0147F5s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib5F9C2C1D78749F7C60A0DA471F0147F5s1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib5F4CFB3CB61166A51CF08C41BAA921EFs1
http://refhub.elsevier.com/S0743-7315(24)00067-4/bib5F4CFB3CB61166A51CF08C41BAA921EFs1

	DuMato: An efficient warp-centric subgraph enumeration system for GPU
	1 Introduction
	2 Background
	3 Related work
	4 Strategies for efficient high-level subgraph enumeration on GPUs
	4.1 DFS-wide enumeration strategy
	4.2 DuMato: an efficient high-level subgraph enumeration system for GPUs
	4.2.1 Execution workflow and programming API
	4.2.2 Use case algorithms developed in DuMato
	4.2.3 Warp-centric design

	4.3 Warp-level load balancing

	5 Experimental evaluation
	5.1 Gains due to optimizations
	5.2 Comparison to other GPM systems

	6 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary material
	References

