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Resumo

Mineração de padrões em grafos (MPG) se refere a uma classe de problemas envolvendo

o processamento de subgrafos extraídos de um único grafo maior. Aplicações para al-

goritmos de MPG incluem consultas por subgrafos com certas propriedades de interesse,

identificação de estruturas em redes biológicas, caracterização de redes sociais, entre out-

ras. Desenvolver algoritmos de MPG é desafiador principalmente pela inerente presença

de sub-rotinas não-triviais lidando com conceitos complexos em teoria de grafos, como

identificação de isomorfismos. Neste contexto, sistemas de propósito geral para MPG

surgem como uma alternativa para melhorar a experiência de usuários com esses algorit-

mos. Entretanto, sistemas de propósito geral para MPG falham em prover um modelo

que seja de fácil entendimento e, ao mesmo tempo, qualificado para exprimir algoritmos

alternativos para um mesmo problema usando diferentes paradigmas de enumeração de

subgrafos, limitando a integração com fluxos de análise de dados atuais. Além disso,

como sistemas de MPG são tão heterogêneos no que se refere aos paradigmas suportados

e ambientes de execução, análises experimentais existentes são incapazes de diferenciar se

as diferenças encontradas no desempenho dos sistemas são melhor explicadas pelos algo-

ritmos utilizados ou pelos detalhes de implementação. Nesta tese, propomos um modelo

para MPG baseado em primitivas, uma implementação distribuída escalável como prova

de conceito para o modelo e uma avaliação experimental extensiva dos paradigmas mais

usados por sistemas de MPG. Nós demonstramos empiricamente a efetividade de nossas

soluções ao observar um desempenho competitivo em relação às propostas existentes sem

sacrificar a expressividade dos algoritmos ou a capacidade de composição dos operadores.

Nossos resultados mostram ainda que nenhum paradigma é melhor em todo cenário de

aplicação e acreditamos que essa e outras de nossas descobertas podem guiar interessados

em direção a sistemas de MPG mais otimizados no futuro.

Palavras-chave: Mineração de padrões em grafos. Sistemas distribuídos. Avaliação

experimental.



Abstract

Graph Pattern Mining (GPM) refers to a class of problems involving the processing of

subgraphs extracted from larger graphs. Applications to GPM algorithms include query-

ing subgraphs with given properties of interest, identifying motif structures in biological

networks, characterizing social media, among others. GPM algorithms are challenging

to develop due to inherently subroutines that include non-trivial graph theory concepts

and methods such as isomorphism. General-purpose GPM systems emerge as a solution

to improve the user experience with such algorithms. However, general-purpose GPM

systems fail in providing a consistent model that is simple to understand and qualified to

express alternative algorithms for the same problem via different paradigms for subgraph

enumeration, limiting the integration with modern data analytics pipelines. Furthermore,

because GPM systems are so heterogeneous in terms of supported paradigms and com-

puting architecture, existing experimental evaluations are unable to distinguish whether

performance differences are best explained by algorithmic strategies or implementation

details. In this work we propose a primitive-based model for GPM, a proof of concept

distributed implementation of that model, and an extensive experimentation analysis of

popular algorithmic paradigms used in GPM systems. We demonstrate empirically the

effectiveness of our model by showing competitive performance against state-of-the-art

systems without sacrificing the expressiveness of algorithms or the composability of op-

erators. Our experimental results also show that no single paradigm is best for every

application scenario, and we believe that our findings may guide practitioner towards

more optimized GPM systems in the future.

Keywords: Graph pattern mining. Distributed systems. Experimental evaluation.
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Chapter 1

Introduction

Graph pattern mining (GPM) refers to a class of problems marked by the processing

of subgraphs extracted from larger graphs. The relevance of GPM computation is mul-

tidisciplinary, including applications such as motif extraction from biological networks

[92, 57, 3], frequent subgraph mining [34], subgraph searching over semantic data (e.g.,

RDF) [33], social media network characterization [124, 70], community discovery [28, 9],

periodic community discovery [104], temporal hotspot identification [135], identification

of surprising dense subgraphs in social networks [54], link spam detection [79], financial

fraud detection [52], recommendation systems [142], graph learning [90, 81], among others.

We review next some of these exemplary applications for GPM computation.

Social networks. In social networks, small motifs (a.k.a. subgraph patterns) can be

used to capture high-order relations between nodes in social networks [141]. Specifically,

the authors are capable of improving the performance of user ranking in real-world net-

works by leveraging the motifs extracted. In the context of temporal networks, several

applications leverage from dynamic graph pattern mining strategies. The evaluation of

balance in social networks, i.e., the proportion of positive and negative relations in a group

of individuals, can be estimated using simple cycles in temporal networks [41]. In terms

of temporal data, high-order structures (motifs) also play an important role. Specifically,

temporal motifs composed of consecutive events (directed edges) may reveal significant

communication patterns that otherwise would remain undetected in a static setting. As

an example, [71] shows strong evidences of temporal homophily in a large phone call

dataset, i.e., similar individuals appear to have a tendency to participate in specific com-

munication patterns beyond the expected. Other interesting properties studied in social

networks through graph pattern mining algorithms include mining periodic communities

(subgraphs) from networks of interactions [104], extraction of diversified subgraphs repre-

senting temporal hotspots in dynamic networks [135], identifying surprisingly subgraphs

(those that one would not expect to be part of some network) [54], searching optimal local

communities for a given vertex [24], and extracting antagonistic communities from social

networks [40].
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Biological networks. In biological field, subgraph enumeration has also been used to

extract patterns in multi-layer brain networks, with practical applications to epilepsy

identification [57]. Motifs counting can also be used for finding sets of proteins in PPI

(protein-protein interaction) networks associated with a given disease [3] – the authors

show that standard proximity metrics are insufficient for such tasks and furthermore,

that high-order (motifs) structures can improve the quality results of disease identifica-

tion. Other seminal work uses temporal subgraphs to identify feedback loops in neural

networks [31].

Graph learning and recommendation systems. Graph pattern mining algorithms

are being used in the context of recommendation systems [142], where the authors lever-

age motifs to rank users in a network using a motif-aware PageRank algorithm. Graph

pattern mining techniques may also be used for predicting the evolution of dynamic net-

works [105]. In particular, [90] generalizes the link (and node) prediction task [81] to

subgraph prediction task. For instance, in a citation network where nodes represent au-

thors, venues, and topics, a subgraph prediction task could unveil high-order relationships

that are likely to occur in the future: authors co-authoring papers in new venues or in new

topics, for example. An expressive challenge in this context is to efficiently extract train-

ing data (subgraphs) and/or to generate subgraph embeddings for downstream learning

tasks, both directly related to the scalability of subgraph enumeration systems in modern

parallel/distributed architectures. This constitutes an exemplary scenario where a graph

pattern mining task requires the enumeration of subgraph instances and not only a few

summary statistics of patterns, as in motif counting [92] – count statistics – or frequent

subgraph mining [34] – support statistics. Finally, Subgraph enumeration is also required

as subroutine for generating graph-pattern association rules (GPARs) in the context of

marketing and recommendation systems [37]. In a related scenario, graph pattern mining

kernels such as maximal clique finding are used to support learning graph representations

in machine learning pipelines [93] or local motif counts may be used to improve the quality

of network embeddings [111].

Broader impact. Association rules is a widely known topic in data mining research.

Specifically, extracting association rules [4] from temporal graphs can unveil important

and timely inference power to dynamic systems. When association rules are composed

of events defined by subgraph patterns, one can observe scenarios where an event (sub-

graph pattern in time) is triggered by a second event (other subgraph pattern in time)

with high probability. For example, in communication networks, it may the case that

“if a user u joins a group call of his co-workers, he usually texts another contact in 5

minutes” [95]. This case could be represented by an observed temporal clique inducing

a single edge communication between two users on that clique. Naturally, an inevitable
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step for constructing these association rules is the subgraph enumeration of events within

the temporal graph, one of the main goals of this work. Other line of work uses subgraph

enumeration strategies to detect fraud in financial transactions [52] or in malware detec-

tion [99] and thus, could benefit from an efficient subgraph enumeration system capable

of providing fast and reliable analytic results.

Graph pattern mining algorithms tend to be complex to develop and to integrate

into existing data analysis pipelines. Indeed, workloads for graph pattern mining must

handle challenges such as the combinatorial explosion of subgraphs extracted from a larger

graph, and non-trivial programming routines for preventing unnecessary enumeration

cost (automorphisms) or for grouping subgraphs into equivalence classes (isomorphisms).

Moreover, this complexity is only exacerbated if one considers the parallelization of such

algorithms as the ideal goal for extracting adequate performance from these solutions. In

this context, general-purpose graph pattern mining systems emerge as an alternative for

programming and for maintaining GPM applications.

The space of existing general-purpose GPM systems is diverse. In one dimension,

concerning the computing architecture and parallelization approaches, some systems are

designed for multi-threaded or distributed settings [60, 30, 121, 12, 132], others for emerg-

ing GPU architectures [21, 19], and yet others for hardware accelerators [136, 22]. In a

second dimension, two main alternative GPM paradigms are adopted by GPM systems

and are responsible for ensuring an efficient search-space exploration of subgraphs: (i) the

pattern-aware paradigm [60] in which subgraph enumeration is accomplished by match-

ing candidate patterns (templates) against the input graph and (ii) the pattern-oblivious

paradigm [121] in which no pattern information is given to guide subgraph enumeration.

Such a range of existing implementations in multiple architectures spanning various algo-

rithm paradigms leads to a lack of understanding on the source of the performance gains,

and it also complicates the evaluation of new and existing optimizations.

General-purpose GPM systems provide many common routines from GPM algo-

rithms and hide much complexity from the end-user, improving the overall usability and

applicability of the system in solving domain-specific problems. A remarkable example

is the subgraph enumeration engine included in most general-purpose GPM systems and

responsible for obtaining subgraph candidates for downstream processing. The details of

how subgraph extraction is implemented is of little importance while developing a data

analysis pipeline that includes searching for specific subgraphs. On the other hand, GPM

systems should not be limited to fixed strategies for subgraph enumeration and subgraph

selection – generic implementations should be provided as default while optimized solu-

tions should be made possible to advanced users. GPM systems are carefully designed

to provide this adequate trade-off between programming productivity and execution effi-

ciency. Naturally, abstractions for GPM computations play an important role in balancing

these two sometimes conflicting features – they provide a high-level understanding of the
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computation model to the end-user, and they also are easily ported to different systems

using different languages on a plethora of existing architectures.

In this work our goals are to provide a standard model for general-purpose GPM

that can be composable and portable, to design an efficient parallel and distributed imple-

mentation for this model that can be easily integrated into existing processing pipelines,

and to provide a comprehensive performance study on the inherent trade-offs that GPM

paradigms may exhibit. Specifically, we present solid solutions concerning modeling and

implementing efficient general-purpose GPM solutions (Chapters 4 and 5) and a wide

experimental evaluation of GPM paradigms and abstractions that may be of interest for

future work (Chapter 6). Before getting into those details, in the remaining of this chapter

we describe the challenges, the contributions, and the organization of this text.

1.1 Challenges

A proper problem modeling represents an important step in providing automated

and consolidated systemic solutions for problems in a given context. The same applies to

GPM computations. The first step most existing proposals disregard is towards a solid

modeling strategy for representing general-purpose GPM applications. Existing models

lack the simplicity, the composability, the integration, and the extensibility necessary to

a top-level computation model, the same way SQL is a widely adopted standard for re-

lational data. Moreover, because GPM processing admits modeling algorithms according

to multiple paradigms (pattern-oblivious or pattern-aware), a proper model for general-

purpose applications should also consider this

The next aspect of challenge concerns the proposal of effective general-purpose

solutions in modern architectures. At its core, GPM methods perform subgraph enumer-

ation. In this work we refer to subgraph enumeration as a routine for graphs responsible

for extracting subgraphs from a single larger input graph. Subgraph enumeration may be

computationally and storage intensive, where a tremendous amount of intermediate state

can be generated even when running on small-scale networks (e.g., 5-10k nodes). This

imposes challenges in terms of both runtime and memory performance. Moreover, the

irregular topology presented in scale-free graphs makes GPM quite challenging regarding

load balancing in parallel and distributed settings.

This complexity, has led to the development of distributed algorithms for spe-

cialized (domain-specific) GPM problems, such as frequent subgraph mining [1], motif

counting [110], and clique counting [39], that do not generalize to other GPM problems.

Systems such as Arabesque [121], and NScale [106] have emerged as first generation,
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general-purpose solutions for GPM. While both potentially offer programming interfaces

suitable for processing coarse-grained GPM applications, their computation models fail

to support fine-grained interactive analysis. In fact, those systems adopt a BFS-style

subgraph enumeration to balance the work at the end of each synchronization step, gen-

erating and shuffling a huge amount of intermediate state between workers, what leads to

increased overhead at larger scales.

Next we list the specific challenges motivating this work:

• Algorithm model for GPM (C1). Existing general-purpose GPM systems often put

all the effort into optimizing performance and providing programming language API,

but most lack an underlying abstract model for expressing precise execution plans

in different paradigms for subgraph enumeration. Such gap limits GPM solutions

in the following aspects: (i) solutions tend to be too strict in terms of the GPM

paradigm used for extracting subgraphs, which complicates the processing of rea-

soning about alternative approaches to solve the same problem; (ii) extensive work

must incorporate new abstractions and features in an uncertain GPM model, which

slows down extensibility and portability of solutions; and (iii) it is difficult to reason

about performance and to understand application semantics in a context where pro-

gram building blocks (operations and their purpose) are implicit and hard to track

[100].

• Efficiency, programming productivity, and integration of GPM systems (C2). Enu-

meration of subgraphs is a computational intensive task that quickly consumes the

computational resources available, even in a distributed setup with mid-size inputs.

The performance of GPM applications are determined by how efficiently we are able

to minimize resource idleness, and to overlap communication with computation.

Part of such intensity comes from the memory demand of GPM workloads. Indeed,

subgraph enumeration often explores an exponential space of candidate like any

other combinatorial problem. In this scenario, the intermediate state of subgraph

candidates can quickly become an issue. Existing data-parallel processing systems

work over the abstraction of distributed collections, which is infeasible for applica-

tions dealing with huge amounts of intermediate data. The amount of intermediate

data during subgraph enumeration grows exponentially, making memory a critical

bottleneck. Moreover, the intense use of memory in garbage collected languages –

which are widespread amongst popular stacks for data analytics – introduces per-

formance overheads and unpredictability [42, 84, 98, 97].

Other part of this computational intensity comes from the irregular nature of typical

input to graph pattern mining algorithms. Graphs used in GPM tasks usually follow

a power-law degree distribution (scale-free) [140], which generates highly irregular

and imbalanced workloads that are hard to characterize apriori.
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On top of all that, the design and implementation of GPM solutions are hard even

for experts, especially for distributed architectures. In this context, programming

productivity should be faced as a top-level design choice, with a simple and trans-

parent interface that portrays typical and integrated pipelines for GPM analytics.

• Evaluation of GPM paradigms (C3). GPM algorithms built over general-purpose

systems often include user-specific semantics, and multiple algorithms to a problem

may exist. This means that our experimental methodology must accommodate both

pattern-aware and pattern-oblivious paradigms within the same system implemen-

tation and underlying application model – which is non-trivial since existing GPM

paradigms differ in how they build subgraph candidates during enumeration. To get

around this issue, most existing GPM systems support only a single GPM paradigm

(either pattern-aware or pattern-oblivious) [60, 121], and those that support both fail

in providing means to combine paradigms and in understanding the impacts of the

implementation details (programming language, architecture, optimizations) [20],

which makes them not ideal for a systematic experimental evaluation since a direct

comparison may not distinguish whether the performance differences are explained

by the GPM paradigm or the implementation details.

In order to identify the trade-offs between alternative GPM paradigms, one must

consider a diverse set of applications and scenarios. Moreover, an experimental

evaluation with these goals must not only report comparative performance mea-

surements, instead it must be able to provide a comprehensive and insightful diag-

nostic on the possible variables responsible for the reported results. Existing works

on general-purpose GPM provide only a narrow perspective of possible application

scenarios [30, 121, 60, 21, 19] and lack a deep understanding on the sources of per-

formance discrepancies making it difficult to understand when one paradigm may

be preferred over the other [60].
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1.2 Thesis statement

The thesis of this work is that GPM systems can greatly benefit from a strong,

well-defined model for algorithms that is independent of implementation details such as

system architecture, programming language, and parallelization strategies. Such model

can improve the productivity for applications by simplifying the design of complex non-

trivial algorithms and facilitate the design and implementation of scalable systems for

GPM by allowing a more modularized view of the architecture. The existence of such

model can also allow a more comprehensive and fair evaluation of existing GPM paradigms

and provide the basis for the future of automated, cost-based GPM systems.

1.3 Objectives

Our goal with this work is to motivate, to model, to design, and to implement

a unified platform for Graph Pattern Mining at scale. We list the following specific

objectives for this work:

1. Propose a simple and expressive algorithm model for general-purpose GPM.

2. Present design and implementation of a GPM system that adopts the proposed

model and that deals with system challenges concerning the efficiency and the pro-

gramming productivity of GPM applications.

3. Present a wide evaluation study of existing GPM paradigms and application scenar-

ios over a single framework model to both consolidate collective knowledge about

GPM processing and to identify promising future work.

1.4 Contributions

In this work we propose effective models for general-purpose GPM computations

that are capable of expressing different subgraph enumeration strategies, we validate our

model with an efficient and scalable system for GPM that can be easily integrated into

modern data-analytics pipelines, and we provide new perspectives on new abstractions
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for GPM systems that may push the state-of-the-art into another level in terms of new

optimization possibilities and performance gains. To this end, we develop the following

contributions in this work:

1. Primitive-based model for general-purpose GPM applications (Chapter 4). We pro-

pose a formal description of general-purpose GPM applications, unveiling important

building blocks for standardized application design. Also, a rigorous definition of

GPM applications enables more consistent reasoning about system performance be-

cause bottlenecks become easily traceable from the set of operators (building blocks),

allowing new emerging performance-driven abstractions and existing subgraph enu-

meration paradigms to be more effective.

2. Proof of concept implementation and experiments (Chapter 5). We provide a proof of

concept implementation of the proposed model as an available1 open-source general-

purpose distributed and parallel GPM system called Fractal [30]. In addition to the

implementation we present an extensive set of experiments on real-world datasets

showing the effectiveness of our proposal. Fractal’s design includes the following

system contributions:

• Flexible, expressive and compositional API. Fractal’s API and programming

model are designed from the ground up to be simple and to reflect fundamental

GPM operations (denoted as primitives). In this work, we show how the API

is flexible to compose a wide range of GPM applications interactively and

efficiently using just a few lines of code. To the best of our knowledge no other

system can tackle such a range of GPM applications while being user-friendly.

• Mitigating irregular memory demand. The amount of intermediate state in

GPM applications can grow exponentially and it is irregular, making it is

hard to predict, being a significant source of overhead. The use of modern

garbage collected languages – widely used in popular stacks for data analytics

– compounds this issue leading to high unpredictability in performance [42, 84,

98, 97]. Fractal combines a depth-first subgraph exploration strategy with a

“from scratch processing” paradigm to keep the memory requirements bounded

by the size of the input. Our results show that it can improve performance and

reliability of GPM applications: executions up to three orders of magnitude

faster than comparable systems or specialized baselines, while leaving more

memory for the user application.

• Adaptive load balancing. GPM algorithms are irregular by nature and depen-

dent on both input parameters and data characteristics. Balancing the load

1https://github.com/dccspeed/fractal

https://github.com/dccspeed/fractal
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in such problems and minimizing communication overhead is central to perfor-

mance efficiency. Fractal incorporates a novel hierarchical work stealing and

communication mitigating strategy that is aware of task locality and reduces

the communication overhead. The results reveal that our technique achieves a

nearly-ideal load balancing in many scenarios.

3. Experimental evaluation of GPM paradigms (Chapter 6). We provide an extensive

experimental evaluation of GPM workloads, including a wide range of application

scenarios considering multiple algorithms and over real-world datasets. Our evalu-

ation exposes the trade-offs between standard GPM paradigms (pattern-oblivious

and pattern-aware) and show how these trade-offs may be exploited for choosing the

most adequate paradigm for a given workload scenario. Our experimental setting

and general-purpose modeling also expose key takeaways and opportunities for de-

ploying existing and new optimization strategies for both existing and future GPM

systems. Along the way we also provide a discussion on how to identify opportunities

of optimization given the characteristics of specific workloads. To our knowledge

this is the first work to digest such variety of use case scenarios for GPM work-

loads and to consider the inherent trade-offs among these algorithms and respective

paradigms.

1.5 Organization

This work is organized as follows:

Chapter 2 – Preliminaries: In this chapter we provide concepts and definitions used

throughout this work.

Chapter 3 – Related Work: In this chapter we review the literature of general-

purpose GPM, specialized solutions, real-world applications, and characterization of re-

lated GPM workloads.

Chapter 4 – Modeling graph pattern mining applications: In this chapter we

propose a modeling approach to general-purpose GPM and argue why this alternative

may be effective towards flexibility and extensibility.

Chapter 5 – Implementing graph pattern mining systems: In this chapter we

provide design and implementation of a distributed and parallel general-purpose GPM
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system supported by the modeling proposed and we validate our proof of concept with

an experimental evaluation.

Chapter 6 – Consolidating graph pattern mining paradigms and abstractions:

In this chapter we provide the experimental study on GPM paradigms to expose their

trade-offs and to indicate promising research directions.

Chapter 7 – Final Remarks: In this chapter we summarize our findings and discuss

opportunities for future work.
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Chapter 2

Preliminaries

In this chapter we describe preliminary definitions and concepts that are used in this text.

In Section 2.1 we present the graph theory background related to graph pattern mining

computations. Next, in Section 2.2, we provide a precise definition on the general problem

studied in this work. Finally, in Section 2.3, we instantiate the general problem with real-

world graph pattern mining problems. Such problems are referenced in examples and for

evaluation throughout this work. Table 2.1 summarizes the notations used in this text.

Table 2.1: Basic notations.

Notation Description

V (G) Vertices of (sub)graph G.

E(G) Edges of (sub)graph G.

L(G) Labels present in (sub)graph G.

L(v) Labels of vertex v.

L(e) Labels of edge e.

Ä(G) Pattern of (sub)graph G.

Äc(G) Canonical pattern of (sub)graph G.

µ(G) Code of (sub)graph G, a totally ordered representation of its ver-
tices and edges.

µc(G) Canonical code of (sub)graph G

N(S) the set of neighbors of a subgraph S in G

2.1 Graph theory

In Section 2.1.1 we define the input graphs and subgraphs considered for static

GPM processing. In Section 2.1.2 we define the subgraph isomorphism problem and

pattern, recurring concepts in any GPM computation. Finally, in Section 2.1.3, we define

the concept of subgraph codes, related to graph automorphism and important for subgraph
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extraction from the input graph.

2.1.1 Graphs and subgraphs

Without loss of generality, we adopt in this work an input graph G with vertices

and non-directed edges which may have multiple labels (Definition 1). We adopt this

model for graphs for convenience, but it can be easily extended for directed graphs (an

also edge-labeled graphs) by making labels carry out these additional properties.

Definition 1. (Graph) A graph G is represented by three sets, V (G), E(G) and L(G)

which are the sets of vertices, edges, labels of G and one map function L. Each edge

e = (v, u) ∈ E(G) connects a pair of vertices v and u ∈ V (G). The edges are not directed

and there are no self-loops in G. Formally, (vi, vj) = (vj, vi) and e = (vi, vi) /∈ E(G).

The labels of a vertex or an edge are defined according the function L : V (G) ∪ E(G)→

P(L(G)), where P is the power set of a set.

Definition 2. (Subgraph) Let G and S be graphs. We say that S is an subgraph of G

iff V (S) ¦ V (G) and E(S) ¦ E(G). A subgraph is connected iff there is a path between

each pair of vertices u, v ∈ V (S).

The most fundamental routine in GPM algorithms concerns the processing of sub-

graphs extracted from a larger input graph G. According to Definition 2, a subgraph S is

represented by a set of vertices and edges embedded in the input graph G. In this work,

we are interested in connected subgraphs: there must be a path between any pair of nodes

in V (S) comprising edges in E(S). Thus, if not otherwise specified, when we mention the

word “subgraph” in this work we actually mean connected subgraph. In this work, we use

subgraph (Def. 2) to refer to a subgraph instance in an input graph G.

Some GPM applications may also be interested in a more restrict definition for

subgraphs that can be induced (i.e., completely represented) by its set of vertices. Ac-

cording to Definition 3, an induced subgraph is a subgraph such that its set of edges can

be implicitly obtained from the input graph G: given a vertex set for a subgraph, its edge

set comprises all existing edges from G among those vertices.

Definition 3. (Induced Subgraph) An induced subgraph S of G comprises a vertex

set V (S) = IV , where IV ¦ V (G). The edge set comprises all the induced edges: E(S) =

{(u, v) | (u, v) ∈ E(G), u ∈ IV , v ∈ IV }.
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2.1.2 Patterns and isomorphism

Subgraphs extracted from a graph can be mapped to a naive representation of

its structural and labeling information, referred simply as pattern (Definition 5). Note

that subgraph patterns discard the identification of individual vertices and edges from

the input graph and may be represented by a set of pattern edges (Definition 4). Each

pattern edge describes the template for an edge, identified by a source index s of the edge

together with a destination index d of the edge. Moreover, because we consider labeled

graphs as input, each index is followed by its label sets ls or ld. Indexes in this context

have nothing to do with the input graph identifiers for vertices and edges, it is only a

reference for an arbitrary vertex in the template. In practice, a pattern Ä(S) is a template

for a subgraph S and, thus, a subgraph is an instance of its pattern.

Definition 4. (Pattern Edge) Given a graph G, a pattern edge is 5-tuple (s, d, ls, ld, l),

where s, d ∈ N0 represent respectively the source and destination vertices of the edge,

ls, ld, l ¦ L(G) represent respectively the set of labels of the source vertex, destination

vertex, and edge.

Definition 5. (Pattern) Given a subgraph S of graph G, the pattern of S is a set of

pattern edges Ä(S) such that (u, v) ∈ E(S) iff (Ã(u), Ã(v), L(u), L(v), L((u, v))) ∈ Ä(S),

where Ã is an isomorphism between S and Ä(S) (Definition 6). We say that a pattern is

induced iff it is derived from an induced subgraph.

Figure 2.1 provides an example of these concepts. Colors represent vertex labels

and numbers represent vertex unique identifiers. In this example, the input graph is a

clique with 4 vertices, which contains two subgraphs S1 = {0, 1, 2} and S2 = {0, 1, 3}, both

sharing the same pattern: a labeled triangle. This labeled triangle in turn can be defined

as Ä△ = {(0, 1, 0, 1, 0), (0, 2, 0, 2, 0), (1, 2, 1, 2, 0)}1, if we assume the “red” vertex represents

label 0, the “blue” vertex represents the label 1, and the “purple” vertex represents the

label 2. In this example we assume all edges have the same label (depicted as black lines).

For instance, pattern edge (0, 1, 0, 1, 0) is described as “vertex in position 0, which has

label 0, is connected to vertex in position 1, which has label 1, through an edge that has

label 0 (i.e. a single label represented by solid black lines)”. Although we do not consider

in this work application scenarios where edge-labeled subgraphs are mined, we provide

this more generic definition to highlight that this is supported.

Different patterns extracted from G may exhibit the same structural template

and labeling information. We say that such subgraphs belong to the same equivalence

class and that they are isomorphic to each other. Graph isomorphism (Definition 6) is

1abuse of notation: we omit the set notation for labels whenever the set is a singleton (unit set)
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Figure 2.1: Example of input graph, subgraphs, and pattern. Vertex colors denote labels.
A single edge label is illustrated in this Figure: solid black lines.

Source: Made by the author.

the problem of verifying whether two (sub)graphs have an identical structure (topology),

being fundamental to a variety of GPM applications such as motif counting, frequent

pattern mining and graph matching. Given a set of (sub)graphs S = {Si, S2, . . . , Sn}, the

isomorphism relation divides S into equivalence classes, where each class contains graphs

that are isomorphic among themselves.

Definition 6. (Isomorphism) Two (sub)graphs G and H are isomorphic iff there is a

bijective function Ã: V (G) → V (H) such that there is an edge (vi, vj) ∈ E(G) iff (Ã(vi),

Ã(vj)) ∈ E(H).

Therefore, for our purposes, the definition of pattern is useful but imprecise. Con-

sider again the triangle pattern in Figure 2.1. An alternative representation for this

pattern is Ä′
△

= {(0, 1, 1, 0, 0), (0, 2, 1, 2, 0), (1, 2, 0, 2, 0)}, if we assume the labels have

the same coloring as before but the “blue” vertex is at position 0, the “red” vertex is at

position 1, and the “purple” vertex is at position 2. Such ambiguity can be a problem

when comparing patterns: two representation are indeed different patterns or they are

two alternatives for defining the same pattern? To handle the issues that arise with this

question, we need a stronger definition for patterns: the canonical patterns.

In fact, two (sub)graphs G and H in the same equivalence class have the same

canonical pattern, a common and unique representation for each pattern (Definition 7).

Many canonical labeling algorithms exist for mapping a subgraph to its canonical pat-

tern [73, 56, 133, 14]. In this work, we adopt Bliss algorithm [64] to determine the

canonical labeling of a labeled (sub)graph S, which is given by the function Äc(S). Basi-

cally, the canonical labelling is a string that represents the pattern of a given (sub)graph

through the ordering of its edges. This is a popular and an efficient algorithm to perform

isomorphic checks (i.e., comparison of strings) between (sub)graphs.

Definition 7. (Canonical pattern) A pattern Äc(S) of subgraph S is canonical iff its

pattern edges are ordered according to some canonical labeling algorithm c.
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2.1.3 Subgraph code and automorphism

Definition 8. (Subgraph code) A subgraph code of a subgraph G, denoted by µ(G), is

a totally ordered set of vertices and edges. A subgraph code represents an order in which

each subgraph may be extracted from the input graph.

The enumeration of subgraph instances (not patterns) from a graph is also related

to the concept of isomorphism. Specifically, subgraphs are extracted by the enumeration

of connected vertices and edges from G in a specific order, incrementally. Therefore, any

permutation of vertices and edges represents an enumeration ordered code for the same

subgraph instance in G. We refer to these codes as subgraph codes (Definition 8). We

say that these equivalent orders representing the same subgraph are automorphic to each

other – i.e. they represent isomorphisms from the subgraph to itself.

Figure 2.2 illustrates the issue of multiple subgraph codes that may arise from sub-

graph extraction. For this reason, GPM systems strict themselves to enumerating only a

single canonical representative code2 for each subgraph to prevent redundant and unnec-

essary work. Many canonical ordering algorithms used to ensure that the enumeration

process outputs only a single subgraph code per subgraph exist. The algorithms adopted

in this work to accomplish this task are presented and discussed in Section 4.1.2 because,

as we may see, they are dependent and closely related to the GPM paradigm used.

Figure 2.2: Example of input graph, subgraph, and equivalent codes. In the provided
example it is sufficient to specify vertex ordering, as each vertex in the ordering induces
new edges connecting it to previous vertices in the ordering.

Source: Made by the author.

2not to be confused with canonical pattern
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2.2 Problem definition

In this section we present the concepts needed to properly define a general-purpose

graph pattern mining problem, the problem targeted in this work. Let G be input graph

and S = {S1, . . . , Sn} be the set all of distinct3 subgraphs in G. We define next the class

of problems solved by general-purpose GPM systems. The first definition concerns the

enumeration of subgraphs of interest according to a given size and predicate. We refer

to this problem as the conditional subgraph enumeration problem (Definition 9). This

predicate can be defined over any property that may be obtained from subgraphs in G.

For example, to cite a few, predicates may refer to the number of edges of a subgraph,

the labels of the subgraph, the pattern of the subgraph, or some density measure target

for the subgraph.

Definition 9. (Conditional subgraph enumeration problem) Given a graph G, a

subgraph size k, and a subgraph predicate C. The conditional subgraph enumeration

problem seeks to list connected subgraphs S ′ = {S ∈ S | size(S) = k and C(S)}, such

that: size(S) = |V (S)| iff the problem seeks induced subgraphs (Definition 3); size(S) =

|E(S)| iff the problem seeks general subgraphs (Definition 2); and C(S) is satisfied.

Another definition we need to understand the space of problems in general-purpose

GPM is the concept of subgraph aggregation (Definition 11). This is important since the

space of subgraph candidates extracted from the input graph grows exponentially and

thus, it becomes infeasible generate an output that large. Fortunately, graph pattern

mining problems usually seek for summarizations or aggregations over this exponential

output. Given a set of subgraphs S, a subgraph aggregation performs a summarization

of these subgraphs according to input functions of mapping and reduction. We are given

three functions: (g : S → K) a mapping function to obtain keys from subgraphs, (h :

S → V ) a mapping function to obtain values from subgraphs, and (r : V × V → V ) a

reduction function to reduce two values into one. A subgraph aggregation in this context

over a set of subgraphs S first obtain key/value pairs using functions g and h and then,

reduce the values sharing the same key using the reduction function r. This execution

paradigm is known as Map/Reduce [27]. In fact, the reduction phase is a set reduction

(Definition 10) over the set of subgraphs. Examples of reductions include sums over sets,

averaging, counting by key, among others.

Definition 10. (Set reduction) Given a set A ̸= ∅ and an associative and commutative

reduction function r : (A× A)→ A, a set reduction over A given r, denoted as R(A, r),

is defined recursively:

3∀Si, Sj ∈ S, Si is not automorphic to Sj
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R(A, r) =







a if A = {a}

R(A′, r) if a, b ∈ A, a ̸= b, c = r(a, b), and A′ = (A \ {a, b}) ∪ {c}

Definition 11. (Subgraph aggregation) Given a set of subgraphs S = {S1, S2, · · · , Sn},

a user-defined function g : S → K mapping subgraphs into arbitrary keys in K, a user-

defined function h : S → V mapping subgraphs into arbitrary values in V , and a user-

defined reduction function r : (V × V )→ V , the subgraph aggregation over S given g, h

and r, denoted as A(S, g, h, r), is defined as A(S, g, h, r) = {(ki, vi) | ∃Sj ∈ S, g(Sj) =

ki, vi = R(S
′, r),S ′ = {h(Sj) | g(Sj) = ki}}.

Figure 2.3 shows an example of aggregation over a set of subgraphs with 3 ver-

tices. Informally, this aggregation obtains the frequencies of patterns, i.e., the number of

subgraphs of each pattern. We describe this operation next, considering the definitions

of subgraphs (Definition 2), patterns (Definition 4), and subgraph aggregation (Defini-

tion 11). The result of such aggregation is a mapping composed of tuples of patterns (Ä1
and Ä2) and their respective frequencies (2 and 3):

A(S, g, h, r) = {(Ä1, 3), (Ä2, 2)}, where:

Ä1 = {(0, 1, 0, 0, 0), (0, 2, 0, 0, 0)}

Ä2 = {(0, 1, 0, 0, 0), (0, 2, 0, 0, 0), (1, 2, 0, 0, 0)}

S = {S1({v0, v1, v3}, {e0, e2}), S2({v0, v1, v2}, {e0, e1, e6}), S3({v0, v1, v4}, {e0, e3, e7}),

S4({v0, v1, v5}, {e0, e4}), S5({v0, v1, v6}, {e0, e5})}

g : Si → pattern(Si) // key is the canonical pattern of Si

h : Si → 1 // value is 1

r : (a, b)→ a+ b // sum reduction

Definition 12 formalizes the general problem of this work: subgraph aggregation

problem. Specifically, the subgraph aggregation problem combines conditional subgraph

enumeration with subgraph aggregation to produce the results. The following steps char-

acterize this problem:

1. Subgraph enumeration to produce subgraph candidates S

2. Subgraph pruning given a predicate C that each subgraph in S should satisfy. The

result of this step is a subset of the original subgraph candidates: S ′ ¦ S.

3. Subgraph aggregation over S ′, generating the final results.
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Figure 2.3: Example of an aggregation over subgraphs of size 3 that counts the number
of subgraphs per pattern. Only a few subgraphs of size 3 are shown.
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Definition 12. (Subgraph aggregation problem) Given a graph G, a subgraph size

k, a subgraph predicate C, a user-defined function g : S → K mapping subgraphs into

arbitrary keys in K, a user-defined function h : S → V mapping subgraphs into arbitrary

values in V , and a user-defined reduction function r : (V × V ) → V , the subgraph

aggregation problem seeks to obtain a subgraph aggregation A(S ′, g, h, r) (Definition 11)

over a set S ′ of subgraphs enumerated from G that satisfy predicate C: S ′ = {Sj ∈ S |

size(Sj) = k and C(Sj)} (Definition 9).

To give an idea of what an instance of this problem may look like, see Figure 2.4.

This figure represents the enumeration and pruning steps of the subgraphs aggregated in

Figure 2.3. That aggregation is already defined and thus, step 3 is complete. Steps 1 and

2 are implicitly defined in this figure for subgraphs from the graph of Figure 4.2 starting

with vertex v0. In particular, this instance represents the subgraph enumeration over the

input graph with 3 vertices. Thus, we apply the aggregation illustrated in Figure 2.3 over

this reduced set of subgraphs. We define this problem instance as follows:

• Graph G(V,E) from Figure 4.2, where V = {v0, v1, · · · , v6} and E = {e0 =

(v0, v1), e1 = (v1, v2), e2 = (v0, v2), e3 = (v2, v3), e4 = (v0, v3), e5 = (v0, v4), e6 =

(v1, v4), e7 = (v2, v4), e8 = (v0, v5), e9 = (v2, v5), e10 = (v0, v6)};

• Subgraph size k = 3, where k represents the number of vertices (induced subgraphs);

• Predicate C(S) is satisfied for all S ∈ S

• Mapping function (g : S → P) = S → Ä(S), where S ∈ S;

• Mapping function (h : S → N) = S → 1, where S ∈ S;

• Reduction function (r : (N× N)→ N) = (a, b)→ a+ b, where S ∈ S.
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Figure 2.4: Example of subgraph enumeration from the input graph in Figure 4.2.
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2.3 Graph pattern mining problems

Some graph pattern mining tasks are so fundamental that we may define them

as GPM kernels, because they implement core operation analysis over graphs and they

are often seen in several applications [92, 34, 5]. Next, we review popular GPM kernels

studied in the literature, instantiated as subgraph aggregation problems (Definition 12),

and used as workload in this work.

2.3.1 Motifs kernel (k-MC )

A motif P is defined as a connected and induced subgraph pattern in an input

graph G. The goal is to count frequencies of all motifs (patterns) having k vertices. This

kernel usually ignores the labels in G and it is widely used in bioinformatics [102, 92].

Specifically, let G(V,E) be an input graph, S = {S1, S2, · · · , Sn} be the set of induced

subgraphs of G, S be an arbitrary induced subgraph in S (S ∈ S), and k the number of

vertices targeted for the subgraphs, the following items define an instance of the motifs

kernel:



2.3. Graph pattern mining problems 34

• Induced subgraphs with size k;

• Predicate C(S) is satisfied for all S ∈ S;

• Mapping function (g : S → P) = S → Ä(S);

• Mapping function (h : S → N) = S → 1;

• Reduction function (r : (N× N)→ N) = (a, b)→ a+ b.

The motifs kernel has only one constraint that limits the size of induced subgraphs

to k. The mapping function g extracts the key for aggregation from the subgraphs,

representing the canonical patterns obtained. The mapping function h extracts the value

function from a subgraph and in this case it is a constant 1 for counting. Finally, the

reduction function r defines the associative operation of summing the partial counts of

the same pattern. Figure 2.3 illustrates the aggregation part in the motifs kernel.

2.3.2 Cliques kernel (k-CL)

A k-clique is a complete subgraph having k nodes in an input graph. In this case,

only the topology of the subgraphs is considered. The cliques kernel is used in [28, 25].

Formally, let G(V,E) be the input graph, k be the number of vertices in a clique, S be the

set of induced subgraphs of G, S be an arbitrary induced subgraph (S ∈ S), the following

items define the k-cliques kernel:

• Subgraphs (also induced subgraphs) with size k;

• Predicate C(S) ⇐⇒ ∀u, v ∈ V (S), (u, v) ∈ E(G);

• Mapping function (g : S → {cliques}) = S → cliques;

• Mapping function (h : S → N) = S → 1;

• Reduction function (r : (N× N)→ N) = (a, b)→ a+ b.

In this kernel, we have two constraints: valid subgraphs have k vertices and each

one of them is connected to k− 1 other vertices, yielding a total of k(k−1)
2

edges. Because

we are interested in counting a single pattern (i.e. the k-clique pattern), mapping key

function g returns the cliques always. The other mapping function h and the reduction

function r represent the sum over all valid subgraphs. The result of this kernel is a mapping

with a single entry representing the number of k-cliques, denoted by m: {(cliques,m)}. A

particular instance of the cliques kernel is the triangle kernel, i.e., cliques with 3 vertices.
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2.3.3 Pattern querying kernel (Ä-PQ)

Querying a subgraph pattern is maybe the naivest GPM application known. The

task is to list and count all the subgraphs in an input graph G that are isomorphic to

a user-defined pattern p. The following items describe the subgraph querying kernel in

terms of the subgraph aggregation problem:

• Subgraphs with size k = |E(p)|

• Predicate C(S) ⇐⇒ Ä(S) = p

• Mapping function (g : S → P) = S → P .

• Mapping function (h : S → N) = S → 1.

• Reduction function (r : (N× N)→ N) = (a, b)→ a+ b.

Valid subgraphs have exactly the same number of vertices as p, the same number

of edges as p, and have the same template as p. The output of this kernel is a mapping

with only one entry, representing the number of subgraphs m isomorphic to pattern p in

G: {(p,m)}.

2.3.4 Frequent subgraph mining kernel (k-FSM -³)

A Frequent Subgraph Mining (FSM) kernel seeks to obtain all frequent subgraph

patterns from a labeled input graph G. A pattern P is frequent if it has a support

s(P ) ∈ S above a threshold ³, i.e., if s(P ) g ³. In particular, s(P ) is calculated based on

the set of isomorphisms of the extracted subgraphs. We adopt the minimum image-based

support [16] as the support function s(·) to leverage the anti-monotonic property: larger

frequent patterns can only be obtained from smaller also frequent patterns. Because of

this hierarchical behavior, the FSM kernel is defined as a chain of conditional subgraph

enumeration problems, where the output of a computation level (the frequent patterns)

serves as input to the next computation level.

Specifically, to compute the frequent patterns with k edges, we split this execution

in three steps: (1) computation of frequent patterns with 1 edge; (2) computation of

frequent patterns with 2 edges from frequent patterns of size 1; and (3) computation

of frequent patterns with 3 edges from frequent patterns of size 2. Nevertheless, the

following items describe each step i = 1, 2, · · · , k of the FSM kernel. Let G(V,E) be the
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input graph, S be the set of subgraphs with i edges of G, i be the current FSM step, and

Fi−1 be the set of frequent patterns with i− 1 edges4:

• Subgraphs with size k (i.e., number of edges);

• Predicate C(S) ⇐⇒ Äc(S) ∈ Fi−1;

• Mapping function (g : S → P) = S → Äc(S);

• Mapping function (h : S → S) = S → s(S);

• Reduction function (r : (S× S)→ S) = (a, b)→ a+ b5.

In this case, step i generates valid subgraphs with i edges that can be obtained

from frequent patterns (S ′ ∈ Fi−1). The mapping key function extracts the pattern of

the subgraph, the mapping value function extracts the support of the subgraph. Finally,

the reduction function combines the supports of the same pattern using an associative

“+” operator. The output of step i is A(S, g, h, r), in which we derive the input for

step i + 1 representing only the mappings spanning frequent patterns: Fi−1 = {(Ä, s) ∈

A(S, g, h, r) such as s g ³}.

2.3.5 Quasi-cliques kernel (k-QC -³)

Dense subgraph extraction can assist in fraud detection for social networks [55],

in unveiling structural correlations for attributed graphs [115], among others. A ³-quasi-

clique of size k is a subgraph that has k nodes and every vertex of the subgraph has a

degree of at least +³ ∗ (|V (S)| − 1),, i.e., each vertex is connected to a fraction of the

vertices in the subgraph. The problem seeks to list and count ³-quasi-cliques in a graph:

• Subgraphs with k vertices;

• Predicate C(S) ⇐⇒ ∀u ∈ V (S), dS(u) g +³ ∗ (|V (S)| − 1),

• Mapping function (g : S → {qc}) = S → qc;

• Mapping function (h : S → N) = S → 1;

• Reduction function (r : (N× N)→ N) = (a, b)→ a+ b.

4if i = 1, then Fi−1 = ∅
5operator “+” must be defined over set of supports S
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2.3.6 Query specialization kernel (Ä-QS)

Given a pattern query Ä the goal of query specialization [94, 137] is to unveil new

queries that are specializations of Ä, i.e., larger queries containing Ä. The major procedure

in unveiling query specializations is to list and to count subgraphs that are isomorphic to

specializations of query Ä. This kernel is used in the context of query recommendation

and for single graph mining instead of graph databases. Indeed, the latter setting can be

viewed as a particular case of the former and consequently, more challenging [62]. For

simplicity, we consider specializations containing pattern Ä and an additional edge:

• Subgraph with k = |E(Ä)|+ 1 edges;

• Predicate C(S) ⇐⇒ p ¢ Ä(S);

• Mapping function (g : S → {qs}) = S → qs;

• Mapping function (h : S → N) = S → 1;

• Reduction function (r : (N× N)→ N) = (a, b)→ a+ b.

2.3.7 Label search kernel (k-LS -L)

Graph databases are often represented by entities (vertices) that are related among

themselves (edges). In this context, vertices may carry labeled semantics representing roles

or types in the database schema. The goal of label-based subgraph search is to extract

relevant induced subgraphs from a larger input graph according to labels of interest L.

The following items define this kernel in terms of the subgraph aggregation problem:

• Induced subgraph with size k;

• Predicate C(S) ⇐⇒ ∀u ∈ V (S)[L(u) ¦ L];

• Mapping function (g : S → {ls}) = S → ls;

• Mapping function (h : S → N) = S → 1;

• Reduction function (r : (N× N)→ N) = (a, b)→ a+ b.

Valid subgraphs for this kernel are induced, must have a given number k of vertices,

and each vertex must have only labels within a label set L. While this kernel may seem

simple it is widely used in NoSQL graph databases (e.g. Neo4j) for exploratory analysis

in machine learning pipelines.
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2.3.8 Minimal keyword search kernel (k-MKS -K)

Knowledge bases are often represented as triples of subject-predicate-objects (SPO).

A common strategy to model those kinds of relationships is through graphs, where sub-

jects and objects are the vertices and the predicates represent the edges. Moreover, for

each vertex or edge we associate a set of keywords (or property) that characterize the

semantic of that entity. In this setting, we consider the problem of keyword search. Given

a knowledge graph and a keyword query represented as a set of keywords, our goal is to

find the subsets of triples (or subgraphs) that best answer this query. We consider the

subtask of retrieving subgraph candidates for the query.

Given an attributed graph G with keywords as labels on vertices, a subgraph size

k, and a query represented by a set of keywords (labels) K = {w1, . . . , wC}, the task is

to retrieve subgraphs in G as follow. A subgraph is retrieved if each keyword is covered

by some vertex in the subgraph [12, 127]. In this case vertices not covering any keyword

are allowed in the subgraphs of interest as long as they are strictly necessary to maintain

the subgraph connected (minimal). Let S be the set of subgraphs of G, S ∈ S be an

arbitrary subgraph of G. The following items define this kernel in terms of the subgraph

aggregation problem:

• Induced subgraph with size k;

• Predicate C(S) ⇐⇒ K ¦ L(S), ∀u ∈ V (S)[L(u) /∈ K =⇒ V (S) \ {u} is

disconnected]

• Mapping function (g : S → {kws}) = S → kws;

• Mapping function (h : S → N) = S → 1;

• Reduction function (r : (N× N)→ N) = (a, b)→ a+ b.

2.4 Graph pattern mining paradigms

A fundamental routine for graph pattern mining applications is subgraph listing

or extraction. Let G be a graph and k be a subgraph size 6, our goal is to enumerate

all subgraphs of size k in G satisfying a given predicate C, which may be applied to the

subgraph itself or its pattern. Next we define two well-known alternatives for this task.

6number of vertices for induced subgraphs, number of edges otherwise
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Definition 13. (Pattern-aware subgraph enumeration) Let C be a predicate rep-

resenting a set of conditions (or properties) a subgraph in G must exhibit in order to be

of interest and let G be a graph. A pattern-aware subgraph enumeration (PASE ) finds

subgraphs in G by: (i) obtaining a set of patterns of interest P that does not violate

predicate C; and (ii) enumerating subgraphs in G isomorphic to each p ∈ P .

Let P = {P1, P2, · · · , Pm} be the set of all canonical patterns in G, a pattern-aware

subgraph enumeration (Definition 13) explores subgraphs isomorphic to a given set of

patterns, and uses such given information to guide the extension of connected subgraphs.

Algorithm 1 describes the process in high-level details. The method starts by selecting a

set of patterns that may generate subgraphs of interest in G, i.e., patterns that contain

k vertices and that satisfy the predicate C (line 1). Next, for each selected pattern, the

input graph is matched against it producing isomorphic subgraphs for processing (lines

2-5). The matching of each selected pattern works vertex-by-vertex by recursive calls of:

(i) selecting the next vertex to match (to add); (ii) determining pattern edges that connect

the current subgraph to the next vertex to match; (iii) retrieving from G the set of vertices

that satisfy the connectivity pattern represented by those edges; (iv) removing from those

vertices any candidate not satisfying the predicate C or that produces a non-canonical

subgraph code (details on the canonical ordering algorithm for a pattern-aware subgraph

exploration are presented in Section 4.1.2); (vi) and finally including valid candidates to

the current subgraph for matching subsequent vertices.

Algorithm 1 pattern-aware-senum(G, k, C)

1: P ′ ← {P ∈ P | |V (P )| = k and C(P )}
2: for P in P ′ do
3: for u ∈ V (G) do
4: for S in match({u}, P ) do
5: aggregate(S)

6: procedure match(S, P )
7: if |V (S)| = k then
8: emit S
9: else

10: vP ← next-vertex-to-match(S, P )
11: EP ← {(s, ls, d, ld, l) ∈ P | d = vP}
12: V ′ ← {v ∈

⋃

u∈V (S) N(v) | µ(S ∪ {v}) is canonical, C(S ∪ {v}), and
Ä(S ∪ {v}) = Ä(S) ∪ EP}

13: for v ∈ V ′ do
14: match(S ∪ {v}, P )

Definition 14. (Pattern-oblivious subgraph enumeration) Let C be a predicate

representing a set of conditions (or properties) a subgraph in G must exhibit in order to

be of interest and let G be a graph. A pattern-oblivious subgraph enumeration (POSE )

finds subgraphs in G directly using Algorithm 2.
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On the other hand, a pattern-oblivious subgraph enumeration (Definition 14) rep-

resents the class of enumeration strategies that are not pattern-aware. In such exploration

category, canonical subgraph codes are visited but without the help of any reference pat-

tern to guide the subgraph growth. Algorithm 2 describes the overall method in high-level

details. This paradigm works by adding valid words (W (G): vertices or edges) connected

to the current subgraph until it reaches size k. Subgraph extensions are valid if they

generate canonical subgraph codes (details on the canonical ordering algorithm for POSE

are presented in Section 4.1.2) and satisfy the given subgraph predicate (line 8). Note

that in this case, no information about which patterns are being extracted from the input

graph is given whatsoever.

Algorithm 2 pattern-oblivious-senum(G, k, C)

1: for w in W (G) do
2: for S in explore({w}) do
3: aggregate(S)

4: procedure explore(S)
5: if size(S) = k then
6: emit S
7: else
8: W ← {w ∈ N(S) | µ(S ∪ {w}) is canonical and C(S ∪ {w})}
9: for w in W do

10: explore(S ∪ {w})

Figure 2.5 illustrates the difference between both subgraph enumeration frame-

works. While POSE enumerates subgraph candidates directly by having some partial

order among subgraphs of different patterns, PASE includes a pattern generation step

where patterns of interest are first obtained and each are matched against the input

graph. We highlight that the output is equivalent since the same subgraph candidates are

generated regardless of the paradigm adopted.

We make an informal argument that both methods may be used to solve graph

pattern mining applications. In POSE , all subgraphs are visited once, and only once,

because the algorithm only generate larger subgraph codes that are canonical. Therefore,

all subgraphs are visited in no particular order, meaning that there is no way of determining

the pattern of the next subgraph being produced. Naturally, this is sufficient for visiting

all the search space required for the conditional subgraph enumeration problem. On the

other hand, in PASE , patterns are selected before subgraph exploration. Indeed, the

algorithm can always be exhaustive in generating the set of patterns that are going to

be matched in the input graph, in case the predicate is unable to select specific patterns.

Also each subgraph is visited only once for the same reason as in POSE . Therefore, all

subgraphs are visited in a particular order: all subgraphs isomorphic to pattern P1, then

all subgraphs isomorphic to pattern P2, and so on. Naturally, this is also sufficient for
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Figure 2.5: GPM paradigms: pattern-oblivious (POSE) vs. pattern-aware (PASE).
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visiting all the search space required for the conditional subgraph enumeration problem.

An interesting analogy exists for understanding these two alternative subgraph

exploration paradigms for graph pattern mining: querying tuples in a relational database.

In this scenario, we can always determine queries (patterns) sufficient to cover all the

tuples – this is analog to the PASE approach. Alternatively, we may instead retrieve the

same set of tuples by fully scanning the database – this is analog to the POSE approach.

In this work, as we may see, we leverage these alternatives to propose a general modeling

for graph pattern mining applications (Chapter 4) and abstractions (Chapter 6).
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Chapter 3

Related Work

This chapter is devoted review the GPM literature and related topics. In Section 3.1

we introduce the class of algorithms known as graph analytics, and we argue why these

algorithms may not exhibit the same challenges as GPM processing. In Section 3.2 we

present some specialized ad-hoc solutions for specific GPM problems to motivate why

this strategy may be too strict for real-world data analytics pipelines. In Section 3.3

we introduce existing general-purpose GPM systems, which aim at filling the gaps of too

specialized GPM solutions. Finally, in Section 3.4 we review a few existing works in which

goal is to characterize and understand GPM workloads.

3.1 Graph Analytics

A popular distributed fault-tolerant system, Pregel [85], offers a “think like a ver-

tex” (TLV) programming paradigm, which simplifies the design of graph analytics al-

gorithms (e.g. Pagerank, HITS, belief propagation and shortest path) [15, 69, 43]. In

TLV, each vertex of the input graph works as a computation unit, running operations to

update its own state value and sharing these processed results with its neighborhood in

the input graph. Over the past years many optimizations and variants of Pregel’s TLV

model have been proposed [44, 122, 131, 116]. Some of these systems [122, 116] present a

subgraph-centric model, but it is not transparent to the users and subgraphs are used to

reduce data communication among machines. Other matrix-inspired cloud-based graph

processing systems such as System-ML [13], PEGASUS [66] and GBASE [65] have also

been examined, since for some problems (e.g. PageRank), the matrix representation ad-

mits the use of fast linear algebraic kernels. However, in such systems every iteration

typically requires a full matrix operation, which may be overkill for many applications

(e.g. keyword search) where only a small part of the graph needs to be active. Adapt-

ing such systems for graph pattern mining problems such as FSM and clique listing is

non-trivial.
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Single-machine systems such as GreenMarl [53], Galois [96], GraphChi [74], Ligra [113]

X-Stream [109] are tightly integrated to the underlying architecture. However, these ef-

forts lack the ability to process iterative problems that accrue large intermediate state

and none support the central primitives for GPM algorithms (e.g. frequent graph mining)

or work in a heterogeneous, live environment, with machine downtimes (fault tolerance).

3.2 Specialized Graph Pattern Mining

There have indeed been algorithmic advances or specialized frameworks for each of

the applications considered, like graph pattern matching [2, 75, 143, 112, 76], graph motif

extraction [117], frequent subgraph mining [1, 11, 83, 50, 82], and also RDF and keyword

search related problems [33, 58]. BENU [129] is a parallel backtracking algorithm for

subgraph querying, designed to leverage redundant operations in subgraph enumeration

to generate an optimized query plan. It employs a coarse-grained parallelism by splitting

enumeration branches according to a given threshold.

While many of those frameworks are highly efficient for their individual applica-

tion domain, none of them, to our knowledge, generalize and support different types of

applications, while delivering competitive performance.

3.3 General-purpose Graph Pattern Mining

Arabesque [121] and NScale [106] represent the first generation of general purpose

distributed systems that operate on a subgraph-centric programming model for graph

processing. NScale (built on Hadoop) was not designed to handle FSM and related GPM

problems, and it is unclear if it can scale to problems that generate large intermediate state

(potentially overwhelming the Hadoop File System). On the other end of the spectrum,

G-Miner [106] is a brand new MPI-based C++ framework for graph pattern mining and

subgraph exploration. Unlike the above systems and Fractal, G-Miner does not focus on

programmer productivity and cannot tolerate machine downtime.

Rstream [128] is a general-purpose single-machine graph pattern mining system

that leverages out-of-core environments to store intermediate data. Its core idea is to

enumerate and represent graph pattern mining computations through join operations



3.3. General-purpose Graph Pattern Mining 44

over a stream of edges. RStream outperforms existing systems – including Arabesque

– in several configurations despite being a single-machine system. However, RStream

still suffers from a huge cost on intermediate state management, as the results of join

operations that represent intermediate subgraphs still must be generated and accessed on

disk, which quickly becomes infeasible to handle. The latter observation is empirically

studied by a recent work that proposes AutoMine, another GPM system built upon this

weakness.

Automine [87] is single-machine system for general purpose graph pattern min-

ing programming. The system, denoted AutoMine, generates C++ optimized code for

subgraph enumeration, given template patterns to be enumerated. The main idea is to

minimize redundant computation while reducing the memory footprint of subgraph enu-

meration of induced subgraphs. Although the code generated is parallelizable, it remains

unclear what kind of load balancing guarantees AutoMine provides for large-scale skewed

input graphs. Nevertheless, it is still a challenge to extend its model for distributed

loosely coupled machines, where efficient communication is central for an adequate re-

source utilization. The same authors proposed the Dryadic [86] system that leverages an

intermediate representation for general-purpose pattern matching computations. By us-

ing standard compiling optimizations, Dryadic is capable of producing more efficient C++

code than its predecessor (Automine). Despite the advantages of generating specialized

code for a set of querying patterns, such approach may become infeasible for patterns

with more vertices and edges or for scenarios where the number of patterns of interest is

substantial – in these cases the cost for generating the intermediate representation and

the cost of maintaining large binaries are not negligible.

Tesseract [12] is a distributed system for incremental graph pattern mining where

the input graph may change during computation. Applications in Tesseract are built

through two user-defined functions that determines which subgraphs must be pruned

from enumeration (filter) and which candidates are subgraph of interest (match). While

this design is simple enough to accommodate many applications, it lacks the flexibility

that we aim for: these functions are monolithic in the sense that they are reused in all

subgraph enumeration steps for correctness. In this case, it is unclear how to compose

subgraph extension primitives with filtering in specific steps of the computation.

Peregrine [60] is a single-machine multi-threaded system for graph pattern mining

that uses an execution model centered on the subgraph patterns. In particular, Peregrine

expresses any GPM computation as multiple pattern querying routine – in many senses,

similar to what Automine [87] and Gtries [108] propose. While this architecture enable

applying existing optimizations (symmetry breaking [46], subgraph querying by connected

vertex cover [67]) with low cost, some issues still remain unsolved. Its purely pattern-aware

approach relies on the pre-computation of the patterns for downstream processing. As

we increase the size of subgraphs, an exponential number of pattern queries arise, which
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pressures the underlying system – especially, considering the skewed nature of real-world

graphs where many patterns may not even exist. Also notice that managing or storing

pre-computed patterns on external storage may introduce expressive access overhead.

Another concern regarding this model regards the load balancing on distributed settings,

where traditional shared memory architectures can not be leveraged to keep adequate

resource utilization.

Overall, existing general-purpose systems for GPM either fail to provide a well-

defined model for expressing GPM applications, or lack the flexibility to incorporate

different graph pattern mining paradigms as solution alternatives. Such features, as we

may see, are essential for composability and integration in modern analytics pipelines.

3.4 Understanding subgraph enumeration

computation.

GraphMineSuite [10] is a benchmark for evaluating graph mining algorithms. The

system provides a set of tools and methodologies for evaluating and tuning properties

and behaviors of specific graph mining algorithms (i.e., not necessarily related to pattern

mining) implemented over a standard set algebra. The authors provide multiple experi-

mental use cases but not from a multi-paradigm perspective. Indeed, the scope is not on

abstractions and programming expressiveness for graph pattern mining systems. Besides

that, the specificity of each algorithm and the lack of standard strategies for searching

the space of subgraphs makes the task of reasoning about different paradigms not trivial,

which justifies our approach of evaluating GPM algorithms.

Subgraph enumeration for general-purpose GPM systems has been explored in de-

tail in the context of pattern-aware frameworks. Pattern analysis [61, 68] can be used

as an effective tool for optimizing exploration plans of querying patterns. The pattern

information about subgraphs of interest is used to reuse computation and to reduce the

depth of enumeration. While these optimizations are effective in the pattern-aware sce-

nario, it remains uncertain what are the limitations for GPM problems targeting larger

patterns, where the overhead of generating and analyzing multiple patterns may not be

trivial. Dryadic [86] is a graph pattern mining system that proposes an intermediate state

representation to pattern matching, which allows a more systematic reasoning about op-

timized exploration plans. While these systems focus on how to optimize set operations

and exploration plans for pattern-aware computations, our work takes a step back and

handles a more fundamental challenge concerning the trade-offs between pattern-aware
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and pattern-oblivious paradigms on real problems. Also, they do not include in their

experimental evaluation application scenarios for label-based subgraph querying, so fun-

damental in the graph database community (e.g. Neo4j).

We also highlight a few community efforts of understanding subgraph mining work-

loads in the context of specific problems not subject to general-purpose programmable

systems. Subgraph matching systems (a.k.a. pattern querying) have been extensively

studied: in distributed settings, an experimental study reveal important trade-offs be-

tween existing optimizations for subgraph enumeration by joining substructures or by

replicating the input data [77]; in the context of labeled graphs [119], the authors pro-

vide a detailed comparison among existing algorithms for the problem. Specifically, these

solutions rely on very selective query patterns where materializing intermediary query

structure before subgraph enumeration is feasible and in this work we are more interested

in general-purpose contexts where this assumption may not hold. A detailed study on

ordering heuristics for cliques listing [80] evaluates several clique listing algorithms and

proposes a new color-based vertex ordering for optimizing the enumeration process. They

provide a comprehensive comparison between state-of-the-art clique listing algorithms,

along with a discussion about minimizing the enumeration tree by reordering the vertices.

While this study gives important contributions on how to improve existing clique listing

algorithms, it remains unclear how graph ordering affects other GPM kernels. These focus

on fine-tuning specific algorithms for very particular problems (same purpose as GraphMi-

neSuite [10]) and thus, they represent complementary contributions to our goal. In fact,

it remains as future work to study which problem-specific optimizations are generalizable.

It is also possible to leverage common memory access patterns observed in GPM

workloads to improve memory efficiency on hardware accelerators [136, 18, 120]. These

works propose hardware accelerators specifically designed for graph pattern mining appli-

cations. For instance, one may explore the power-law distribution in free scale graphs to

maintain certain graph data that is more frequently accessed fixed in the hardware cache

(or the equivalent to it) [136]. While the insights are very expressive on how to improve

data locality in GPM computations, it remains unclear how to leverage this in CPU/GPU

architectures where the control over higher-level (low response time) memory chips.
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Chapter 4

Modeling graph pattern mining

applications

From the subgraph aggregation problem (Definition 12) we can extract three main sub-

tasks that must be performed to produce the expected output: (E) subgraph extraction;

(A) subgraph aggregation; and (F) search space pruning. Solving these three subtasks

separately and composing the results allow us to solve any instance of the conditional

subgraph enumeration problem. Indeed, with these tools we are able to generate the

whole search space of subgraphs, to prune out the unimportant ones, and to aggregate

the important ones according to some aggregation function.

A naïve approach to model instances of the subgraph aggregation problem is to

mix and combine arbitrarily steps of subgraph enumeration, aggregation and pruning in

execution time. For example, a GPM algorithm could be described atomically, without

clear distinction of any of these parts. Actually, many existing domain-specific systems for

GPM adopt such strategy, due to its simplified design [34, 1] or to allow implementation

over low-level highly optimized frameworks [17]. Another approach is to define a fixed

order for subtask processing and to adopt a BSP (Bulk Synchronous Parallel) [125] runtime

to model GPM applications [121]. The order in which GPM subtasks are combined is

fixed (E, then F, then A, then E, and so on) to allow splitting GPM tasks into BSP

supersteps. Even though the last allows more expressiveness towards general-purpose

GPM applications, it lacks the flexibility of combining subtasks in any particular order

and the possibility of generating complex GPM programs. In this case, to omit or to jump

a subtask, the designer must include empty operations in the application, which can be

confusing and inefficient in terms of modeling.

Given these limitations, our proposal is to consider subtasks as computation prim-

itives: extension (E), aggregation (A), and filtering (F). Thus, every GPM algorithm can

be expressed by a composition of computation primitives, in any particular order that

reflects the targeted semantics. Furthermore, because we keep the number of primitives

to a minimum, the design of complex GPM applications comes down to building blocks

of primitives along with their parameters.

Next we describe in detail the scope of each primitive and which requirements
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they should meet. In Section 4.4 we breakdown the design of GPM applications using

this primitive-based approach, showing how the designing process of complex applications

becomes more concise and effortless.

4.1 Extension primitive

This is a core primitive in our computation model, responsible for generating the

solution space of any GPM problem - specifically, it represents the subgraph enumeration

step of GPM problems. This primitive receives a set of connected subgraphs as input and

extends them by using their own neighborhood in G, producing a set of larger subgraphs,

also connected. Naturally, it is possible to extend subgraphs using different methodologies,

depending on the type of subgraphs targeted and the algorithm used for extending them.

Thereby, we make the following distinction between the type of subgraph extension and

the method used for subgraph extension:

• Subgraph extension type: describes the extension units used to obtain a larger

subgraph from an existing one. During the extension process, extension units are

extracted from the neighborhood of the current subgraph in the input graph. For

example, possible extension units include elements like vertices, edges, or subgraphs.

We define an extension unit as a tuple (V ′, E ′) of vertices and edges that can be

added to the current subgraph in order to produce another subgraph (Definition 15).

This aspect is important because it defines what to search for in the neighborhood

of a subgraph.

• Subgraph extension method: describes the algorithm used to obtain the sub-

graph extensions of a given type. For example, one may be interested in all sub-

graphs that can be generated given an extension type, or yet a sampling of subgraphs

that can be generated given an extension type. Moreover, we may be interested in

extending subgraphs based on certain priority measure extracted from the appli-

cation semantics. In the extension method it is usually included some ordering

enumeration strategies for only generating a single subgraph code per subgraph to

prevent redundant computation. This aspect is important because it defines how to

explore the neighborhood of a subgraph.

Definition 15. (Extension unit) An extension unit is a tuple (V ′, E ′) of vertices and

edges that can be added to a subgraph to produce a larger subgraph.
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Figure 4.1 shows the scheme of the extension primitive. In summary, the combina-

tion of subgraphs and extension units results in larger subgraphs. The extension primitive

defined in terms of these two aspects means that type and method works together towards

the targeted extension semantics. Thus, on considering subgraph extension, the first point

to choose is what is the type of subgraph extension, followed by the specification of the

extension algorithm given the type. Therefore, the choice of which extension types to

consider is crucial to our modeling, as it is closely related to the expressiveness of the

model in designing an wide range of GPM applications. Next, we detail each aspect of

the subgraph extension primitive.

Figure 4.1: Extension primitive scheme.
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4.1.1 Extension types: supporting multiple graph pattern

mining paradigms

A close look into GPM literature allows us to identify two main classes of applica-

tions: exploratory kernels, in which the search space of subgraph is explored in disregard

with the patterns being discovered [92, 110]; and searching kernels, in which the search

space is conditioned by characteristics of specific patterns given as input [75, 76]. Surpris-

ingly, a variety of applications can be expressed thinking about these two classes. Based

on this, we consider three types of extensions as the standard for most GPM workloads:

• Edge-oriented extension type (TE): expands a subgraph S edge-by-edge, con-

sidering its neighborhood, i.e., edges adjacent to the current subgraph not yet in-

cluded in it. Among extension options, this is the finest-grain of subgraph enu-

meration that one may perform, being used in algorithms for frequent subgraph
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mining [121, 34]. The extension unit of this extension type is a tuple (V ′, E ′) rep-

resenting the set of vertices V ′ and edges E ′ being added to the current subgraph:

V ′ ̸= ∅ whenever the edge e = (v, u) ∈ E(G) being added spans a new vertex

outside the current subgraph ((v /∈ V (S)) · 1(u /∈ V (S))), and V ′ = ∅ when-

ever an edge between two vertices already in the current subgraph is being added

((v ∈ V (S)) ' (u ∈ V (S))), but note that |E ′| = 1 always because by definition

this extension type is edge-by-edge (e /∈ E(S)). This extension type outputs general

subgraphs (Definition 2) of the input graph.

• Vertex-oriented extension type (TV ): expands a subgraph S vertex-by-vertex,

that is, whenever a vertex v ∈ V (G) is added, all edges that connect v to S are

included: |V ′| = 1 always because by definition this is a vertex-by-vertex extension –

v /∈ V (S), |E ′| g 1 because at least one edge e = (v, u) ∈ E(G) connects v with the

current subgraph via another vertex u ((v /∈ V (S)) ' ∃u(u ∈ V (S))). This is often

used in exploratory kernels such as motif extraction [108, 32, 110, 121] and clique

listing [25, 39, 121]. This extension type outputs induced subgraphs (Definition 3)

of the input graph.

• Pattern-oriented extension type (TP (Ä)): expands subgraphs vertex-by-vertex,

but guided by a user-defined reference pattern Ä. The extensions v ∈ V (G) of

a subgraph S will be constrained to those that operate off of Ä: |V ′| = 1 al-

ways because by definition this is an extension vertex-by-vertex, i.e., v /∈ V (S)

and |E ′| = m, where m is the number of edges connecting v to the current subgraph

according to pattern Ä. Given a subgraph S ′ isomorphic to a sub-pattern Ä′ ¢ Ä,

we say that a vertex v ∈ V (G) matches a pattern vertex v
(j)
ρ iff S = S ′ ∪ {v}

continues to be isomorphic to some sub-pattern Ä′′ ¦ Ä. In other words, the

matching vertex can be safely added to the current subgraph in a sense that it

is still possible to the current subgraph to grow and to exhibit the given pattern

Ä. This notion of matching extends to induced patterns as well: the matching

vertex may be required to be incident to only those vertex in the target pat-

tern. Specifically, we assume the vertices of Ä are ordered v
(0)
ρ , v

(1)
ρ , · · · , v

(k−1)
ρ

and thus, a valid extension v matching the j-th pattern vertex (matches(v
(j)
ρ , v))

must connect each vertex in the current subgraph adjacent to it in the pattern:

∀(u ∈ V (S))∀(i < j)(((v
(i)
ρ , v

(j)
ρ ) ∈ E(Ä) ' matches(v

(i)
ρ , u)) → (u, v) ∈ V (G)).

This is a commonly used option in where analysts interactively provide a reference

pattern and ask for instances (subgraphs) of that pattern, for example, pattern

querying [76]. This extension type outputs induced subgraphs iff the reference pat-

tern is induced (Definition 3) and outputs general subgraphs iff the reference pattern

is not induced (Definition 2).

1“exclusive or” operator
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Figure 4.2: Types of subgraph extension: the subgraph above (composed of vertices and
edges in solid lines)
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Figure 4.2 shows a running example of these three extension types, where the

current subgraph S(V = {v0, v1, v2, v3}, E = {e0, e1, e2, e3, e4}) is highlighted with solid

lines and the neighborhood of this subgraph with dashed lines. For simplicity, we as-

sume all vertex and edge labels in this example are 0. The total number of extensions

following the edge-oriented approach is 6, the total number of extensions for the vertex-

oriented approach is 3, the total number of extensions for the pattern-oriented approach

given Ä = {(0, 0, 1, 0, 0), (0, 0, 2, 0, 0), (0, 0, 3, 0, 0), (0, 0, 4, 0, 0), (1, 0, 2, 0, 0), (2, 0, 3, 0, 0),

(2, 0, 4, 0, 0)}2 is 2, and the total number of extensions for the pattern-oriented approach

given an induced version of Ä is 1.

We notice the core characteristic of each strategy: edge-oriented extensions always

contain single edges, vertex-oriented extensions always contain single vertices but they

carry all the incident edges into the subgraph with it, and pattern-induced extensions

also always contain single vertices and carry all the corresponding edges respecting the

topology of the user-defined pattern Ä. Also, extension types directly correspond and

model the existing paradigms for graph pattern mining (Section 2.4): vertex-oriented

2By Definition 4, a 5-tuple (s, ls, d, ld, l) represents a pattern edge.
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(TV ) and edge-oriented (TE) correspond to the POSE paradigm (Definition 14), while

pattern-oriented (TP (Ä)) corresponds to the PASE paradigm (Definition 13).

4.1.2 Extension methods: supporting multiple subgraph

extension strategies

Determining extension types is necessary but not sufficient for a complete extension

primitive specification. For example, the application designer may decide to explore the

subgraph space of a graph vertex-by-vertex, thereby generating induced subgraphs, but

obtaining extensions using a particular strategy: all extensions, a sample of extensions,

extensions using an optimized data structure, and so on. Therefore, we create this second

level of modeling, denoted as extension methods, to accommodate such requirements and

consequently, increase the expressiveness of our model.

4.1.2.1 General-purpose extension methods

An important feature that most extension methods should have is the guaran-

tee of uniqueness for subgraphs enumerated. As in any combinatorial problem, subgraph

enumeration must handle symmetric subgraphs (automorphisms of some subgraph). Sym-

metric subgraphs are valid enumerations that represent the same subgraph S in the un-

derlying input graph, the only difference being the order in which the extension units are

composed, i.e., the subgraph code µ(S). For example, consider Figure 4.3. A strategy

for enumerating this triangle can leverage the vertex-oriented type (TV ) and an extension

method that generates this triangle vertices in the following order: 0, then 1, then 2, gen-

erating the vertices V (S) = {0, 1, 2}. However, an alternative enumeration method may

generate the same triangle through a different order: 0, then 2, then 1, also generating

the vertices V (S) = {0, 1, 2}. The main issue with symmetries is that they are redundant

and can alter the correctness and performance of the algorithm. Thus, extension methods

often limit themselves in generating only canonical extensions given a subgraph, i.e., only

those subgraph extension units that certainly generate one representative candidate per

subgraph. Several techniques for preventing the enumeration of all symmetries of a sub-

graph exist, like canonical subgraph checking [121] and symmetry breaking for subgraph

querying [46]. Separating types from methods for the extension primitive enables these
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features to be seemly integrated into the extension GPM task.

Figure 4.3: Example of input graph, subgraph, and equivalent codes.

Source: Made by the author.

Next, we show two extension methods for generating all the extensions of a sub-

graphs in two contexts: (1) exploratory analysis and (2) searching of patterns. All ex-

tensions method is considered the default approach for extension methods since it covers

all the search space for subgraph enumeration and thus, it is independent of application

semantics. For the algorithms presented, reverse(list) returns an iterator for list in

reverse order; find-edges(Ä, idx) returns all the pattern edges (Definition 4) of pattern

Ä in which the source or destination of that edge is idx.

All extensions method for edge-, vertex-oriented types (MC): Algorithm 3 shows

an extension method that generates all the extensions of a subgraph from a graph G.

This oulined algorithm is based on a standard enumeration technique known as Reverse

Search [8]: the general idea is to (1) define a rule (a function) that obtains smaller con-

nected subgraphs from larger subgraphs by removing the largest vertex from the larger

subgraph; and (2) define the inverse of that rule to build-up larger subgraphs from smaller

ones. The current subgraph is denoted code because this routine works for induced sub-

graphs (Definition 3) or general subgraphs (Definition 2). For conciseness, we omit el-

ements from the sequence of extension units that can be inferred given the extension

type. Thus, in case this method is used for induced subgraphs, code = {c0, c1, · · · , ck}

and extensions represent lists of vertices and the subgraphs are induced by them. In case

this method is used for general subgraphs, code and extensions represent lists of edges

and the subgraphs are the union of those edges.

This procedure implements the canonical subgraph checking [121], which estab-

lishes a global ordering for the subgraphs to remove redundant enumerations. The tech-

nique is based on three conditions that need to be satisfied for every subgraph code (list

of vertices or list of edges) obtained: (1) valid extensions must always be greater than

the first element in the subgraph code; (2) extensions greater than the last element in the

code are always valid; (3) extensions less than the last element in the code are valid if,
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and only if, the extension is adjacent solely to the last element of the code. The original

procedure takes O(k2d) time, where d denotes the maximum degree of the input graph,

since for each edge in the neighborhood of a k-sized subgraph (O(kd)) the algorithm per-

forms an O(k) canonical test to determine whether the subgraph plus the extension is

valid.

The idea behind these conditions is that if an extension is smaller than the last

element of the code and this extension is adjacent to another element besides the last

one, then this enumeration should be generated earlier and thus, we can ignore it at this

position. This is equivalent to maintaining a lower bound of extensions allowed at each

position i in code, i.e., as we iterate verifying the neighbors of the subgraph we prune the

extensions outside the bounds, generating only valid extensions without symmetries. Our

equivalent interpretation of a series of canonical tests allows a reduction in the cost of

the algorithm: instead of repeating O(k) tests for each extension Algorithm 3 generates

canonical extensions directly with a one-pass extension check, i.e., in O(kd) time. Since

this represents an improvement over the original work [121] we adopt this algorithm as

our standard method for edge- and vertex-induced extension types.

Algorithm 3 all-extensions(G,S): subgraph extension method that generates all the
vertex-oriented or edge-oriented extensions of a subgraph.
1: extensions ← ∅
2: code ← µ(S)
3: lowerBound ← first(code)
4: for c in reverse(code) do
5: for n in N(c) do
6: if n > lowerBound then
7: extensions ← extensions ∪ {n}
8: else
9: extensions ← extensions − {n}

10: lowerBound ← max(lowerBound , c)

11: return extensions − V (S)

All extensions method for pattern-oriented type (MP (Ä)): Algorithm 4 shows an

extension method that generates all the extensions of a subgraph matching an user-defined

pattern Ä. In this case, the subgraph is defined by its list of vertices and the edges among

them are defined by the pattern given as input. In this case, the subgraph is defined by

a list of its vertices because the connections between them are implicitly obtained from

pattern Ä.

The extension process guided by a pattern Ä works as follows. First, we determine

the next vertex that must be matched in the pattern to extract the pattern edges touching

the next vertex. The next vertex together with its pattern edges form a star connecting

potentially several existing vertices already in the subgraph. Thus, the candidates for
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extension are exactly the intersection of neighbors in the subgraph adjacent to the new

vertex. That way we are certain that the correct pattern is generated. In case the pattern

is induced, the algorithm excludes those extensions incident to edges that should not be

in the pattern. An additional step is to apply the symmetry breaking conditions [46]

over the set of extensions to further extensions that would generate subgraph duplicates

(Algorithm 5).

Algorithm 4 all-pattern-extensions(G,S, Ä): subgraph extension method that gen-
erates all the pattern-oriented extensions of a subgraph.
1: extensions ← ∅
2: vertices ← V (S)
3: nextVertexIdx ← length(vertices)
4: patternEdges ← find-edges(Ä, nextVertexIdx )
5: edgeSrcs ← ∅
6: for e in patternEdges do
7: src←edge-source-index(e)
8: edgeSrcs ← edgeSrcs ∪ {src}
9: if extensions = ∅ then

10: extensions ← N(vertices[src])
11: else
12: extensions ← extensions ∩N(vertices[src])

13: if is-induced(Ä) then
14: for src not in edgeSrcs do
15: extensions ← extensions −N(vertices[src])

16: sbConditions← get-or-compute-symmetry-breaking(Ä)
17: return {n | n ∈ extensions and satisfies(n, sbConditions)}

4.1.3 Assembling extension types and methods

So far we discussed each aspect of the extension process separately, now we have

the tools to present the extension primitive requirements as a whole. Definition 16 de-

scribes the extension primitive as an atomic GPM operation. In particular, the extension

primitive is a means to obtain larger subgraphs (size3 k + 1) from existing subgraphs

(size k), which by induction means that we are able to reach the whole search space of

subgraphs or induced subgraphs.

Definition 16. (Extension primitive) The extension primitive, denoted E(T,M), is a

GPM atomic operation that produces subgraphs with k+1 extension units of type T from

3we refer to “size” of a subgraph as the number of extension units it contains
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Algorithm 5 symmetry-breaking(Ä): generates a set of conditions of a pattern Ä
that if applied during subgraph enumeration, it filters out subgraph symmetries, i.e., it
guarantees that each subgraph instance is generated once.
1: sbConditions ← {}
2: symmetry-breaking-rec(Ä, sbConditions)
3: function symmetry-breaking-rec(Ä, sbConditions)
4: vertexEquivalences ← vertexEquivalences(Ä)
5: if |vertexEquivalences| = |V (Ä)| then
6: return sbConditions
7: for eq in vertexEquivalences do
8: if |eq| > 0 then

9: v
(i)
ρ ← pop(eq)

10: v
(j)
ρ ← pop(eq)

11: l ′ ← next-unique-label(Ä)
12: l ′′ ← next-unique-label(Ä)
13: Ä′ ← update-labels(Ä, v(i)ρ , l′,v(j)ρ , l′′)
14: if i < j then
15: sbConditions′ ← sbConditions ∪ {(v

(i)
ρ < v

(j)
ρ )}

16: return symmetry-breaking-rec(Ä′,sbConditions′)
17: else
18: sbConditions′ ← sbConditions ∪ {(v

(j)
ρ < v

(i)
ρ )}

19: return symmetry-breaking-rec(Ä′,sbConditions′)

20: function update-labels(Ä, v(i)ρ , l′, v(j)ρ , l′′)
21: Ä′ ← {}
22: for (s, ls, d, ld, l) in Ä do

23: if s = v
(i)
ρ then

24: l′s ← l′

25: else if s = v
(j)
ρ then

26: l′s ← l′′

27: else
28: l′s ← ls

29: if d = v
(i)
ρ then

30: l′d ← l′

31: else if d = v
(j)
ρ then

32: l′d ← l′′

33: else
34: l′d ← ld

35: Ä′ ← Ä′ ∪ {(s, l′s, d, l
′
d, l)}

36: return Ä′

n subgraphs with k extension units of type T using the extension method M . We denote as

M(Si)|T the process of obtaining extension units of type T using method M over subgraph

Si. Formally, E(T,M){S1, S2, · · · , Sn} = {Si ∪ e | 1 f i f n and e ∈ (M(Si)|T )}.

Different combinations of extension types and methods produce different outcomes.
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Table 4.1 show which configurations of these within an extension primitive are well-

defined, and next we highlight their behavior:

Table 4.1: Compatibility matrix among general-purpose extension types and methods.

TV TE TP (Ä)

MC E(TV ,MC) E(TE,MC) undefined

MP (Ä) undefined undefined E(TP (Ä),MP (Ä))

• E(TV ,MC): this primitive represent an extension process that enumerates all unique

induced subgraphs (MC) vertex-by-vertex (TV ), i.e., it generates induced subgraphs

of size 2 from induced subgraphs of size 1, induced subgraphs of size 3 from induced

subgraphs of size 2, and so on.

• E(TE,MC): this primitive represent an extension process that enumerates all unique

subgraphs (MC) edge-by-edge (TE), i.e., it generates subgraphs of size 2 from sub-

graphs of size 1, subgraphs of size 3 from subgraphs of size 2, and so on.

• E(TP (Ä),MP (Ä)): this primitive represent an extension process that enumerates all

unique subgraphs of certain pattern (TP (Ä)) vertex-by-vertex oriented by pattern

(MP (Ä)), i.e., the process extends one vertex of the pattern at each step, producing

prefixes of the pattern until its completion.

4.2 Aggregation primitive

The output size of subgraph enumeration can quickly become intractable because of

the exponential growth present in combinatorial problems such as this [103]. In practice,

the impossibility of scaling the subgraph enumeration for bigger subgraphs demands a

different approach for output generation in GPM algorithms. Thereby, a summarization

feature for GPM algorithms is central for the applicability of the solutions. Indeed, most

GPM algorithms produce as output a summarization of the solution space of subgraphs,

for example: kernels like cliques listing and counting (Section 2.3.2) rely on counting to

summarize the output, while kernels like motifs or FSM (Sections 2.3.1 and 2.3.4) rely

on mappings to obtain the distribution of patterns in the input graph. This feature is

fundamental for any GPM application that relies on frequency counts, or any application

that works with aggregates (e.g., sum). In this context, we adopt a GPM primitive

designed to allow general-purpose summarization of large amounts of subgraphs: the

aggregation primitive.
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We adopt a map/reduce approach for aggregation, in which keys and values are

first obtained from subgraphs and aggregated by key, according to a reduction function.

Figure 4.4 shows the general scheme for aggregation primitive. In other words, it receives

a set of subgraphs as input and maps them to key/value entries for subsequent reduction

(see Definition 11). For aggregation one needs to define three functions: (1) a mapping

function to extract a key from a subgraph; (2) a second mapping function to extract a

value from a subgraph; and (3) a reduction function to reduce the values sharing the same

key. Definition 17 describes the aggregation primitive as a GPM operation.

Figure 4.4: Aggregation primitive scheme.
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Definition 17. (Aggregation primitive) The aggregation primitive, denoted A(g, h, r),

is a GPM atomic operation that produces a subgraph aggregation A(S, g, h, r) (Defini-

tion 11) from a set of subgraphs S = {S1, S2, · · · , Sn}. The parameters for this primitive

are the mapping function for keys g, the mapping functions for values h, and a reduction

function r. Formally, A(g, h, r){S = {S1, S2, · · · , Sn}} = A(S, g, h, r).

4.3 Filtering primitive

The search space of subgraphs is exponential and hence, very costly to traverse.

Thus, efficient GPM methods usually consider only a portion of this huge solution space

to improve the efficiency of the solutions proposed. For example, enumerating all k-

cliques from an input graph is costly, but not as costly as enumerating all subgraphs from

the same graph. Therefore, another operation we identify for GPM computations is the

filtering primitive. The filtering primitive is used to prune subgraphs that do not satisfy
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user-defined pruning criteria. Figure 4.5 shows the behavior of the filtering primitive.

Definition 18 formalizes the filtering primitive. The only parameter this primitive requires

is a boolean function to determine whether a subgraph is valid or not (predicate).

Figure 4.5: Filtering primitive scheme.
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Definition 18. (Filtering primitive) The filtering primitive, denoted F (p), is a GPM

atomic operation that selects only valid instances from a set of subgraphs S = {S1, S2, · · · , Sn}.

The parameter for this primitive is the function p : S → {true, false}, which repre-

sents a predicate with the necessary conditions of a valid subgraph. Formally, F (p){S =

{S1, S2, · · · , Sn}} = {Si | Si ∈ S and p(Si) = true}.

Filtering primitives may also prune subgraphs by considering a source of informa-

tion provided by an upstream aggregation primitive (Definition 17). This particular filter

can be leveraged within algorithms like FSM, where subgraphs that do not belong to the

current set of frequent subgraphs may be discarded. For instance, filtering functions can

hold some output from previous aggregations and can include such information directly

in its definition (e.g., as lookup tables [139]).

4.4 Design of applications

The GPM primitives extension, aggregation, and filtering represent the building

blocks in GPM applications. Thus, our modeling strategy comes down to specifying

sequences of primitives along with their respective parameters that represent the solution

logic. Our approach is novel in the sense that this is the first attempt to model GPM

algorithms in a way that is independent of system implementation, that is concise in terms
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of the operators needed to represent different strategies, and that is modular in terms of

how easily the operators can be combined to solve complex graph analytics routines.

Because our goal is to model general-purpose graph pattern mining applications,

we introduce the notion of multi-step applications, in which an output (e.g. the result of

an aggregation) of a previous step is used as input to the next step (e.g. as part of filtering

conditions). An application step (Definition 19) is denoted by a string of primitives to be

applied over an input graph G (regular expression) that starts with an extension primitive

(E), proceeds with any sequence composed of extension and filtering primitives ((E+F )),

finishing with an aggregation primitive that produces the output (A). For clarity, we omit

the primitive parameters.

Definition 19. (Application step) An application step is denoted by the regular ex-

pression GE(E+F )∗A composed of input graph G, and primitives extension (E), filtering

(F ), and aggregation (A).

Finally, a GPM application is a sequence of application steps. Steps may be related

to each other. In FSM, for example, the aggregation of previous steps determines which

patterns are frequent, and this information may be used in subsequent steps for growing

those frequent patterns.

The specification on how these steps are deployed for execution is entirely a sys-

tem’s design choice and independent from this model. For instance, one may implement

a GPM system that ensures that steps are executed sequentially in a single-thread ma-

chine; on the other hand, a different approach would be to parallelize the execution of a

step for multi-threaded distributed environments. We explore more on how to provide an

effective implementation of this model in Chapter 5. For now we discuss how to describe

algorithmic solutions for GPM problems using this model as a facilitating tool.

4.4.1 GPM algorithm design

In this work we use the following following scheme to illustrate an application step,

which can be composed to represent GPM applications:

GPM application step: GP0P1 · · · Pn

where G = “input graph”, P0 = E(T, M), Pn = A(g, h, r),

and Pi ∈ {E(T, M), F(p)} for 1 f i f n− 1
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Figure 4.6: Algorithm design: pattern-oblivious (POSE) vs. pattern-aware (PASE).

Pattern-oblivious (POSE) Pattern-aware (PASE)

motifs
(k-MC )

1: E← E(TV, MC)
2: output GE1 · · · EkA

1: P← vpatterns-ind(k)
2: for ρ in P do

3: E← E(TP(ρ), MP(ρ))
4: output GE1 · · · EkA

cliques
(k-CL)

1: E← E(TV, MC)
2: F← F(isClique)
3: output GE1F1 · · · EkFkA

1: ρ← clique-pattern(k)
2: E← E(TP(ρ), MP(ρ))
3: output GE1 · · · EkA

pattern
querying
(ρ-PQ)

1: E← E(TE, MC)
2: F← F(isSubpatternOf(ρ))
3: output GE1F1 · · · E|E(ρ)|F|E(ρ)|A

1: E← E(TP(ρ), MP(ρ))
2: output GE1 · · · EkA

FSM
(k-FSM -α)

1: E← E(TE, MC)
2: P′ ← EA

3: Pf ← freq-patts(P′)
4: output Pf

5: for i← 2 to k do

6: F← F(patternIsFreq(α, Pf))
7: out← GE1F1 · · · Ei−1Fi−1EiA

8: Pf ← freq-patt-supp(out)
9: if Pf = ∅ then

10: break

11: output Pf

1: Pf ← ∅
2: for i← 1 to k do

3: Pe ← extend-by-edge(Pf)
4: Pf ← ∅
5: for ρ in Pe do

6: E← E(TP(ρ), MP(ρ))
7: P′ ← GE1 · · · E|V(ρ)|A
8: Pf ← Pf∪ freq-patt-supp(P′)

9: if Pf = ∅ then

10: break

11: output Pf

quasi
cliques
(k-QC -α)

1: E← E(TV, MC)
2: qc← canBeQuasiClique(k, α)
3: F′ ← F(qc)
4: F′′ ← F(isQuasiClique(α))
5: output GE1F

′
1
· · · EkF

′
k
F′′A

1: P← vpatterns-ind(k)
2: P′ ← {ρ ∈ P | density(ρ) g α}
3: for ρ in P′ do

4: E← E(TP(ρ), MP(ρ))
5: output GE1 · · · EkA

query
specialization
(ρ-QS )

1: E← E(TE, MC)
2: n← |E(ρ)|
3: P← {ρ′ £ ρ | |E(ρ′)| = n+ 1}
4: F← F(isSubpatternOf(P))
5: output GE1F1 · · · EnFnEn+1A

1: n← |E(ρ)|
2: P← {ρ′ £ ρ | |E(ρ′)| = n+ 1}
3: for ρ in P do

4: E← E(TP(ρ), MP(ρ))
5: output GE1 · · · E|E(ρ′)|+1A

label search
(k-LS -L)

1: E← E(TV, MC)
2: F← F(labelsSubsetOf(L))
3: output GE1F1 · · · EkFkA

1: F← F(labelsSubsetOf(L))
2: P← vpatterns-ind(k)
3: for ρ in P do

4: E← E(TP(ρ), MP(ρ))
5: output GE1F1 · · · EkFkA

minimal
keyword
search
(k-MKS -K)

1: E← E(TV, MC)
2: p← coveredOnceOrNone(K)
3: F′ ← F(p)
4: F′′ ← F(isMinimal)
5: output GE1F

′
1
· · · EkF

′
k
F′′A

1: p← coveredOnceOrNone(K)
2: F′ ← F(p)
3: F′′ ← F(isMinimal)
4: P← vpatterns-ind(k)
5: for ρ in P do

6: E← E(TP(ρ), MP(ρ))
7: output GE1F

′
1
· · · EkF

′
k
F′′A

Source: Made by the author.
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Recall from Section 2.4 that pattern-aware (PASE) and pattern-oblivious (POSE) are

alternative paradigms for GPM. In Table 4.6 we show how to model algorithms for the

kernels considered in this work using these two approaches. Next we drilldown into

important highlights of these algorithms:

Motifs (k-MC ). For POSE, the algorithm is a sequence of k extensions, used to pro-

duce induced subgraphs with k vertices, followed by an aggregation to count by pattern

(denoted as A). Recall that E(TV ,MC) implies in enumerating induced subgraphs (TV )

using a method MC that returns all unique candidates (see Section 4.1). For PASE, we

split the computation into multiple pattern-aware steps (line 2), each representing the

querying of a pattern. For example, if k = 3 we have two possible patterns: a path of

size 2 or a triangle. In this case, we construct a pattern-aware modeling with two steps

(GE1E2E3A): querying 2-paths (pattern Ä1) if E← E(TP(Ä1), MP(Ä1)); and querying triangles

(pattern Ä2) if E← E(TP(Ä2), MP(Ä2)).

Cliques (k-CL). For POSE, the algorithm may be a sequence of k subsequences of

extension followed by a clique filtering condition (isClique), ending with a counting

aggregation: GE1 · · · EkFA. Although this design is correct, it is not efficient. Indeed,

we miss the opportunity for pruning after each extension primitive. After all, cliques

represent only a small portion of all the induced subgraphs in the input graph and this

strategy delay this filtering to the last extension only, which will likely generate a huge

number of invalid subgraphs. This improved design is the one described in Figure 4.6.

For PASE, the algorithm only have one kind of pattern to enumerate: clique pattern

(line 1). In fact, this PASE design for cliques is a special case of pattern querying when

Ä is a triangle.

Pattern querying (Ä-PQ). The POSE algorithm enumerates subgraphs edge-by-edge

and filters out the ones that are not isomorphic to some connected sub-pattern Ä′ ¦ Ä. A

pattern Ä′ ¦ Ä is a connected sub-pattern iff it can be represented by a subset of patten

edges in Ä whose topology is connected (represented as predicate isSubpatternOf(Ä)).

In PASE algorithm, valid subgraphs in this querying kernel are obtained by extending the

current subgraph according to the query pattern Ä. The type of extension TP (Ä) and the

method of extension MP (Ä) specifies this behavior, repeated |V (Ä)| times, i.e., the number

of vertices in the query pattern. While POSE has to visit many invalid subgraphs to apply

the filter function, PASE design in this case is capable of reaching valid subgraph directly

without any kind of subgraph filter.

Frequent subgraph mining kernel (k-FSM -³). In POSE algorithm, because FSM

is hierarchically defined, we model this application as multiple iterations. On each it-
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eration, except the first one, the execution enumerates known frequent subgraphs and

extend this subgraph by one edge, generating larger subgraphs, which are used to deter-

mine the frequency of larger patterns. The first step only determines via aggregation the

frequent edges in the input graph (line 2). Subsequent steps alternate between extension

primitives and filtering primitives (line 7), making sure the algorithm enumerate only

subgraphs with known frequent patterns (patternIsFreq). Note that this is possible be-

cause of the anti-monotonic property of the minimum image-based support definition [16].

The PASE algorithm is also iterative (line 2) but on each iteration multiple steps are gen-

erated, one for each pattern support computation (line 5). generates pattern candidates

(pattern generation) and verifies whether those generated patterns are frequent. From

the set of frequent patterns Pf the algorithm generates a new candidate pattern set Pe

composed of frequent pattern plus a single edge between vertices of frequent labels. This

process is repeated until no more frequent patterns are found or whenever all k-edge pat-

terns are verified. For each pattern candidate Ä ∈ Pe, a new application step for querying

that pattern is created (line 7).

We highlight that both POSE and PASE alternatives for k-FSM -³are multi-step.

However, POSE induces one step per subgraph size, i.e., k steps, while PASE generates

one step per pattern candidate, i.e., patterns that are extensions of frequent patterns by

one edge. Naturally, the magnitude of steps in PASE is larger than in POSE, because

the search space of patterns also grows exponentially.

Quasi cliques (k-QC -³). In POSE algorithm we consider two predicates for pruning

the search space of quasi cliques: canBeQuasiClique keeps only subgraphs that has the

potential to be considered a k-vertex quasi clique given a density measure, isQuasiClique

checks whether a subgraph is indeed a quasi clique. The first predicate as an early

pruning condition to reduce the number of spurious subgraphs generated and checked.

An alternative approach used in PASE algorithm is to first determine which patterns of

a given size meet the quasi clique condition before enumerating any subgraph (lines 1-2).

After that, the algorithm generates one step per quasi clique pattern (lines 3-5).

Query specialization (Ä-QS). The POSE algorithm starts by determining which pat-

terns with one additional edge (i.e. Ä plus one edge) exist (line 3). With that infor-

mation, the subgraph enumeration may proceed and invalid ones can be pruned via

isSubpatternOf predicate. The PASE algorithm generates the same set of possible su-

perpatterns of Ä and queries each one individually in a multi-step application (line 5).

Label search (k-LS-L). In this kernel we are interested in induced subgraphs with k

vertices that only contain certain labels in L. Both POSE and PASE algorithms leverage
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a predicate labelsSubsetOf used to determine whether the subgraph’s labels (L(S)) only

contains labels of interest in L. The main difference between the alternative paradigms

remains the same: while POSE explores subgraphs of no particular pattern within a single

step, PASE does so in multiple steps, one for each pattern generated (line 3).

Minimal keyword search (k-MKS-K). In POSE algorithm we consider two predi-

cates: coveredOnceOrNone ensures that keywords in partial subgraphs are covered once

or none, which guarantees that each of subgraph’s vertices is indispensable for generating

a minimal set; isMinimal is a final predicate used to ensure that only minimal subgraphs

are aggregated. This design is similar to quasi cliques’, while the former predicate is

applied after each subgraph extension the latter is used as a final filtering to maintain

correctness. The PASE algorithm leverages the same two predicates by generates one step

per pattern of a given size. What this means is that even if no minimal subgraph of a

given pattern that covers the label set exists, the algorithm will submit a new step for it

anyway because there is not trivial to determine this apriori.

Overall comparison: pattern-oblivious (POSE) vs. pattern-aware (PASE).

The central property of POSE algorithms is that they gather in a single application step

the enumeration of subgraphs representing different patterns, which tends to produce more

coarse-grained execution tasks. The possible drawback of this strategy is that pruning the

search space in many cases must rely only on expensive filtering predicates and moreover,

many spurious subgraphs may have to be generated before filtering can happen. The

central property of PASE algorithms is that they submit one application step per pattern,

meaning that each step is responsible for only a particular subset of subgraphs. Unlike

POSE, PASE produces more fine-grained execution tasks. Because the number of patterns

grows exponentially with the subgraph size, this may be a problem for larger patterns.

4.5 The advantages of primitive-based model

This primitive-based model allows representing algorithm solutions to any GPM

problem that involves the enumeration of subgraphs from the input graph and this in-

cludes search (aggregate subgraphs satisfying the predicate), optimization (find the best

subgraph satisfying the predicate according to some objective function), and decision

problems (verify whether some subgraphs satisfy the predicate). Conciseness, robust-

ness, and interactiveness are the main requirements guiding this modeling design. This

primitive-based approach is concise because the domain of possible operators is reduced
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and each element has a well-defined purpose: extension to navigate the search space, ag-

gregation to produce summarized output, and filtering to prune the search space. Such

approach is also robust, because it is able to express algorithms to any instance of the

subgraph aggregation problem (Definition 12) using both pattern-oblivious (POSE) and

pattern-aware (PASE) paradigms. Finally, this modeling is also interactive, in the sense

that partial results obtained from primitives can be verified during the solution design

phase. Such aspect is especially important and desirable in data science exploratory

scenarios where the results and hypothesis are usually built incrementally and interac-

tively [101].

Other interesting aspect of this design concerns the opportunities it brings in terms

of exploring alternative solution strategies for the same problem. Indeed, the equivalence

between the GPM paradigms along with the modeling support for effortless expressive-

ness of applications using both approaches allow better reasoning about execution plans

and optimization in general-purpose systems. Such decoupling between problem and al-

ternative solution strategies opens a whole new front of opportunities: to bring GPM

computations closer to optimization-based systems with well-defined operators and ex-

ecution plans [7]; and to improve the performance diagnosis of execution bottlenecks

[100, 29].

Additional discussion on the advantages of the modeling proposed in this chapter

is provided in Chapter 6, where we anticipate novel alternative abstractions that emerges

from it. Meanwhile, in Chapter 5, we proceed in showing how this model may be de-

signed and implemented into a general purpose distributed and parallel system for GPM

programming and computation.
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Chapter 5

Implementing graph pattern mining

systems

The first step when dealing with performance optimization in systems is to determine the

scope of the execution environment considered. Thus, we must specify what kind of com-

puting resources are available for processing before proposing optimizations for improving

the execution performance. Because GPM-related tasks are so time consuming and chal-

lenging, we decide to focus on the scalability aspect of such methods and consequently, a

distributed environment to accommodate our GPM application modeling (see Section 4).

Specifically, we consider a distributed and parallel environment for GPM process-

ing, organized with a single application master and multiple workers. As illustrated in

Figure 5.1, the master contains the execution engine, which manages the underlying clus-

ter resources and coordinates the execution of chunks of work (a). Workers represent

instances that perform the actual processing. Specifically, each worker (w0, . . . , wn−1) is

a process running on multiple execution threads (t0, . . . , tm−1) over a shared-memory mo-

del. Communication occurs between master and workers for scheduling, but also among

workers via a message passing paradigm. Such design eases the initialization and the

asynchronous assignment of work among workers. Other advantages of this model be-

come clear as we discuss our execution design and optimizations in the following sections.

Finally, we assume that all workers have access to the whole input graph G, i.e., the in-

put graph G is replicated in-memory on each worker. Such choice is simplification design

since the subgraph enumeration cost dominates the cost of maintaining the input graph in

memory. Also, our design can be extended to leverage distributed efficient graph storing

technologies [72].

We highlight two main challenges concerning graph pattern mining computations

in this distributed environment: (1) to develop an efficient subgraph enumeration method;

and (2) to ensure an adequate load balanced parallel execution. The first aspect (Sec-

tion 5.1) concerns the proper design of the subgraph enumeration algorithm for the GPM

primitives both in terms of memory and time. The second aspect (Section 5.2) arises in

any massively parallel environment, especially in skewed scale-free graphs.
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Figure 5.1: Execution environment. (a) The master communicates with workers for
scheduling. (b) Workers execute the tasks assigned to them.
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Source: Made by the author.

5.1 Efficient subgraph enumeration

Many graph pattern mining (GPM) algorithms suffer from a combinatorial ex-

plosion of the search space, often requiring the maintenance of large intermediate state

(memory) and thereby overloading the underlying system. As a motivating example to

illustrate this issue, we estimate the amount of memory necessary to keep all induced sub-

graphs occurring in the medium-sized Microsoft Collaboration Network [34], composed of

100K vertices and 1.08M edges. We present our estimates in Table 5.1. We consider that

each subgraph can be represented solely by its vertices (with no memory overheads), i.e.,

NumberOfVertices × BytesPerVertex, where BytesPerVertex is set to a standard integer

of 4 bytes . As a result, the memory requirements quickly become unbearable for subgraphs

with four or five vertices, resulting in demands of 163.27GB and 46.37TB, respectively.

Moreover, because those estimates do not account for the aggregation space requirements,

the problem will only be exacerbated. This also supports our assumption that relatively

medium-sized input graphs that easily can be accommodated in main memory of modern

architectures may generate extremely intractable workloads very quickly due to the ex-

ponential growth: in conclusion, the bottleneck is clearly on the subgraphs enumerated

instead of being equivalent to the input size.

At this point we make a distinction between the memory demands coming from

the enumeration cost versus the demands that accrue due to the aggregation cost. Because

the former tend to be higher than the latter and moreover the latter is domain-specific,

we decide to focus on optimizing the memory demands of the extension primitive.

Before presenting our solution to this issue, let us first review the subgraph enumer-

ation strategy adopted by existing GPM systems like Arabesque [121] and NScale [106]:

the breadth-first subgraph enumeration strategy. Then, we are going to argue why this

may not be a good choice for large scale graph pattern mining workloads. This sub-
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Table 5.1: Estimated memory demands - the number of induced subgraphs grows expo-
nentially, and so the space required to store them.

# vertices # subgraphs estimated memory

1 100, 000 390.62 KB

2 1, 080, 156 8.24 MB

3 66, 081, 419 756.24 MB

4 10, 957, 439, 024 163.27 GB

5 2, 549, 490, 788, 644 46.37 TB

graph enumeration strategy is usually deployed using a Bulk Synchronous Parallel (BSP)

paradigm [125]. In this case, subgraphs are extended hierarchically, using a breadth-first

search algorithm. Figure 5.2 illustrates the basic idea and its relevance in a large-scale

distributed execution platform. Without loss of generality, let us assume the enumera-

tion of induced subgraphs. At each enumeration level, an additional vertex extension is

considered. Thereby, the runtime generates subgraphs with two vertices from subgraphs

with one vertex, subgraphs with three vertices from subgraphs with two vertices, and so

on. This strategy has one main advantage and one major drawback. The main purpose

and advantage of such strategy is to allow the work to be repartitioned at the end of

each synchronization step, i.e., at the end of each subgraph enumeration depth. In this

context, roughly equal amounts of work can be reassigned for a partitioned parallel exe-

cution. The major drawback of this strategy concerns the space cost of maintaining the

subgraphs enumerated on each step. Moreover, the space cost of this approach is bounded

by the number of subgraph candidates, which quickly becomes infeasible as discussed in

the beginning of this section. Finally, because the time efficiency of this method relies on

the load balancing and the load balancing strategy assumes a redistribution of work at

the end of each enumeration step, this space cost is inevitable, as the subgraph candidates

must be materialized in memory or in secondary storage at some point.

We take a different approach for subgraph enumeration. Instead of enumerating

using a breadth-first strategy and experiencing huge space inefficiency, we propose a sub-

graph processing methodology that avoids the need to maintain intermediate state by

(1) enumerating subgraphs using depth-first search algorithm based on primitives (Sec-

tion 5.1.1) and (2) recomputing the subgraphs from scratch on each application step

(Section 5.1.2). This is possible due to our computational model, designed to support

multiple primitive components in a single application step. As we discuss in Section 5.1.3,

our method is capable of delivering a reliable, space-bounded subgraph enumeration for

general-purpose graph pattern mining.
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Figure 5.2: Breadth-first subgraph enumeration for induced subgraphs from the input
graph in Figure 4.2.
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5.1.1 Depth-first subgraph enumeration

In a naïve depth-first subgraph exploration, subgraphs are generated recursively

considering as possible extensions the neighborhood of the current subgraph. Such a

simple approach has a major issue: subgraphs may need to be verified several times,

because this extension unit can be connected to the current subgraph from multiple sites.

In this case, the amount of spurious work for processing the generated subgraphs has

the potential to be exacerbated beyond the necessary. In this context, we propose a

modified in-depth subgraph exploration that combines two phases: a subgraph expansion

phase followed by an in-depth exploration phase. Thus, new subgraphs are generated

by computing the possible extensions of the current subgraph (computeExtensions –

CE), immediately extending the subgraph to one of them in depth until the enumeration

depth targeted (extend – EX), and backtracking for consuming remaining extensions.

In particular, the expansion phase is used to reduce the redundant work experienced

by the naïve approach, as the valid subgraph extensions are unique and generated once

per subgraph to be consumed after. Specifically, the algorithm starts with an extension

unit (e.g. a vertex for induced subgraphs) representing the root of the enumeration

tree, generates valid extensions (vertices) connecting to this root, add the first valid

extension to the current subgraph, and proceeds the processing with this larger subgraph

composed of two vertices. The algorithm repeats this process up to a certain enumeration

depth, determined based on the size of the subgraphs of interest and while still remains

unexplored computed extensions.
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Figure 5.3 presents an example of this method. In this example, we consider

the enumeration of induced subgraphs with three vertices, starting from enumeration

root v0. The execution starts with root v0 (step 0), computes the valid extensions for

subgraph {v0} (step 1), consumes extension v1 and extends the current subgraph obtaining

a new subgraph {vo, v1} (step 2), computes the extensions of subgraph {v0, v1} (step 3),

consumes the first extension v2 yielding the first subgraph with three vertices {v0, v1, v2}

(step 4), backtracks to subgraph {v0, v1} (step 5), consumes the next extension v3 from

step 3 yielding the second subgraph with three vertices {v0, v1, v2} (step 6), and so on.

Figure 5.3: Depth-first exploration for subgraph enumeration. In this example, the target
is subgraphs with three vertices.
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To make this process transparent and extensible, we propose a new data structure

specifically designed to represent this two phase in-depth enumeration method. We call

this structure subgraph enumerator because it represents a checkpoint for the subgraph

enumeration process. Figure 5.4 shows the structure of a subgraph enumerator.

Figure 5.4: Subgraph enumerator abstraction.

subgraph-enumerator {

currentSubgraph; // current subgraph

computeExtensions(); // compute the valid extensions of the current subgraph

extend(); // consume next extension

next(); // returns the subgraph enumerator in the next enumeration depth

}

Source: Made by the author.

Each subgraph enumerator is identified by a current subgraph under extension

process. Extensions candidates of this subgraph are generated with computeExtensions()

, i.e., it implements the first phase of subgraph expansion (CE). In case the current

subgraph is empty, this function generates the set of initial extension units of the input

graph. For example, for edge-oriented extension type (TE) it generates the set of edges of
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the input graph; for vertex-oriented extension type (TV ) it generates the set of vertices of

the input graph; and for pattern-oriented extension type (TP (Ä)) it also generates the set

of vertices of the input graph. Subgraph enumerators work as hierarchical work queues,

where a computeExtensions() call produces the work items (i.e. extension units) based

on the current subgraph and an extend() call consumes a work item from this queue.

The consuming process via extend() generates a new state in the subgraph enumerator

of the next enumeration level (next()), sharing the current subgraph extended by one

extension unit consumed for expansion. This strategy allows the enumeration engine to

maintain an in-place current subgraph that grows whenever it includes new extension

units and that shrinks whenever it backtracks.

Algorithm 6 describes this two-phase depth-first subgraph enumeration method.

Its input is an application step, i.e., a sequence (array) of primitives to be executed

(Definition 19). The algorithm initiates by creating an empty subgraph enumerator, which

is given as parameter to the function process (lines 1-2). This function (lines 3-12) applies

the primitives over the subgraph enumerators recursively. For example, the first primitive

is indexed by zero in the step array. In case of extension (lines 4-8), the algorithm invokes

the method recursively for each possible extension of the current subgraph. In case of

filtering (lines 9-10), we only call the process function pointing to the next primitive if

subgraph passes the filter. Finally, the algorithm handles the aggregation according to

the user’s reduction function (lines 11-12), which marks the end of the recursive call.

Algorithm 6 dfs-processing(step)

1: se← create-subgraph-enumerator()
2: process(se, step, 0)
3: function process(se, step, idx )
4: P ← step[idx ]
5: S ← se.currentSubgraph
6: if is-extension(P ) then ▷ E(T,M)
7: se.computeExtensions()
8: while se.extend() do
9: process(se.next(), step, idx + 1)

10: else if is-filter(P ) and filter(S) then ▷ F (p)
11: process(se.next(), step, idx + 1)
12: else if is-aggregation(P ) then ▷ A(g, h, r)
13: aggregate(key(S), value(S))

The main advantage of this method is to allow a reduced space cost for application

step processing. Specifically, in this strategy we only need to maintain one subgraph enu-

merator per enumeration level at a time. In particular, considering induced subgraphs,

each execution thread has to maintain at most O(kn) words representing computed ex-

tensions on each enumeration depth, where n is the number of vertices in the input graph

and k is the target size for subgraphs. However, we notice that k is usually orders of



5.1. Efficient subgraph enumeration 72

magnitude smaller than n and moreover, for sparse graphs (which is usually the case for

real-world datasets) we observe that n is an overestimation since most vertices have low

degree (N(v)j n for v ∈ V (G)).

This is not true for breadth-first approaches, where all subgraphs of certain size

must be materialized for the subsequent level. We highlight that this in-depth enumeration

method is targeted for the processing of single application steps. Indeed, Algorithm 6

assumes as input a single step represented by its array of sequential primitives. A re-

maining question is how to model multi-step applications, issue that we address next in

Section 5.1.2.

5.1.2 From-scratch step execution

Our subgraph enumeration strategy so far is memory-efficient due to its depth-first

mechanism, which allows a reduced space cost during subgraph enumeration. However,

many GPM applications, including the FSM kernel, can only be efficiently implemented

with multiple application steps, making incomplete the use of Algorithm 6 alone. In such

scenarios, we need to design the policy for the design of multi-step applications.

Figure 5.5 shows two alternatives for modeling such applications, using as example

the two first steps of the FSM kernel. FSM is a multi-step application because it has to

synchronize globally (across all partitions) to obtain patterns and their respective support

frequencies in order to determine which ones meet the user-defined minimum support

threshold1. In Figure 5.5a we see the strategy equivalent to what is used in existing

general-purpose approaches such as Arabesque [121] and NScale [106]: store subgraphs

enumerated at each step for quick access in the next step. In Figure 5.5b we describe

our approach of not storing subgraphs enumerated between steps. In the first step, FSM

kernel seeks to generate and aggregate patterns of size one (step 1: EA-2), but without

keeping the generated subgraphs in memory (or disk) for the next iteration. Instead, in

the second step, the method generates on demand the subgraphs of size two, but only

those that were extended from frequent patterns of size one, obtained in the first step

(step 2: EFEA-). In the third step, we have again the composition of the two former steps

before the new computations (step 3: EFEFEA-), and this process continues while frequent

patterns exists. Thereby, the computations become cumulative and we only need to store

the aggregations, i.e., the actual output to the user. We denote this strategy from-scratch

processing and next, we argue why this may be a more reliable option for graph pattern

1refer to Section 4.4 to review the modeling of the FSM kernel in terms of the primitives
2we omit primitive parameters in this notation and represent the end of steps with “-”
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mining at scale.

Figure 5.5: Multi-step application design alternatives for FSM kernel. Our approach
adopts a from-scratch computation to ensure a space-bounded processing.
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(b) From-scratch processing: steps are recomputed on demand.
Source: Made by the author.

We propose to recompute the primitives from scratch to reduce the intermediate

state of the GPM applications. This strategy essentially trades off memory for redundant

processing, since we need to recompute the subgraphs from scratch. However, given the

scales of subgraphs involved, (see Table 5.1), this may not be a bad trade-off since the

cost of accessing precomputed subgraphs (including potentially out-of-core access) may

dominate re-computation costs. In fact, we verified in the experiments and we anticipate

that the cost of enumerating subgraphs (during the combinatorial explosion phase of the

algorithm) dominates the execution time of a GPM task for representative real-world

input graphs. In Figure 5.6 we demonstrates experimentally that usually the cost of

cumulative previous steps in comparison with the cost of current step is negligible, which

suggests that our strategy is indeed appropriate in this context: we get minimal benefits

from optimizing previous steps.

Algorithm 7 shows how Fractal splits a sequence of primitives into steps and sub-

mits them for execution. The input of from-scratch-execution is an array of primi-

tives, representing the application. Primitives are assigned to the current step until a step

boundary, which is marked by an aggregation primitive (line 6). Whenever a primitive

matches a step boundary, the algorithm adds a copy of the current step to the pool of

steps and proceeds accumulating other primitives (line 9). Thus, steps always accumu-

late computation from their ancestors: primitives in steps {0, . . . i − 1} also belong to

step i with the exception of the aggregation primitive. Finally, the algorithm calls the

enumeration procedure (Algorithm 6) for each step built previously (lines 12 - 13). We

highlight that aggregation results are not recomputed: the execution engine reuses their

results on every subsequent step if necessary and once they are computed. Despite reusing
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Figure 5.6: Enumeration cost of each step against the cumulative enumeration of previous
steps for an exemplar GPM application - it suggests trading off memory for redundant
computation can be effective.
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aggregation results, this is safer than reusing subgraphs enumerated, as aggregations are

supposed to summarize the results of a subgraph enumeration.

Algorithm 7 from-scratch-execution(primitives)

1: steps ← array()
2: step ← array()
3: idx ← 0
4: while idx < len(primitives) do
5: p← primitives [idx++]
6: if is-aggregation(p) then
7: step ′ ← copy(step)
8: add(step ′, p)
9: add(steps , step ′)

10: else
11: add(step, p)

12: for step in steps do
13: dfs-processing(step) ▷ Algorithm 6

From-scratch execution combined with the two phase depth-first subgraph enu-

meration provide a reliable method for designing the execution of general-purpose graph

pattern mining applications. The simplicity and the effectiveness of the re-computation

part may not be clear at first glance, but given the limits of modern computation models

in terms of memory and processing, this strategy arises as a safer solution for large scale

GPM execution, as we are going to discuss next in Section 5.1.3.
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5.1.3 Space bounded parallel and distributed subgraph

processing

The method proposed can be easily extended to parallel and distributed environ-

ments. Considering the architecture in Figure 5.1, a parallel implementation distributes

the initial extension units among each execution thread tj of each worker wj, which serves

as a bootstrap for the root subgraph enumerators on each thread in parallel. Thereby,

Algorithm 6 can be adapted to accommodate multiple subgraph enumeration trees at

once: one for each extension unit used as root.

An important advantage of the proposed solution – depth-first subgraph enumer-

ation + from-scratch step processing – is that the execution will not crash due to out-of-

memory errors and, hence, more memory is available for the user-defined aggregations.

Moreover, the execution cost tends to be dominated by the CPU time because the memory

footprint of this solution is minimal. Also, we avoid the cost of accessing precomputed

subgraphs, including potentially out-of-core accesses. However, two potential concerns

regarding our solution are: (1) the cost of recomputing the subgraphs from scratch and

(2) it can lead to imbalance among workers, since the cost among enumeration roots

tends to be skewed. In fact, trading off memory for redundant processing is beneficial

since the cost of enumerating subgraphs (during the combinatorial explosion phase of the

algorithm) will dominate the execution time of a GPM task. The load imbalance among

workers is addressed next in Section 5.2.

5.2 Load balancing

Our subgraph processing is efficient in terms of space and is easily parallelizable,

as discussed in Section 5.1. However, graph pattern mining in practice can be tricky

due to the irregular nature of degree distributions in real graphs. Therefore, naively

applying the subgraph enumeration strategies introduced in Section 5.1 in real scenarios

can result in serious performance bottlenecks concerning load imbalance. Considering

our computation model, we would observe some worker cores finishing their part of the

work almost instantly and other worker cores taking too long to complete. Furthermore,

high-degree nodes tend to lie in dense regions of the graph, which exacerbates the problem

(skew) as we deepen into the enumeration process in a recursive manner. In such scenarios,

load-balancing becomes key to achieve both good performance and resource utilization
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since standard pipelining leverages task independence to coordinate parallelism.

Figure 5.7 shows the resource utilization (CPU) when we employ the depth-first

from-scratch strategy on a single machine with 28 cores for the cliques kernel with k = 4.

Each core initially takes a partition of the graph vertices and enumerates all 4-cliques

rooted by vertices in their respective partition, as we described in Section 5.1.3. We

observe a critical scalability issue: the resource utilization drops very quickly as some

cores finish their work early, while others keep running as stragglers for a long time (long

tail).

Figure 5.7: Subgraph enumeration without any work balancing. The x-axis represents
relative utilization of the worker, considering all available cores. The y-axis represents the
timeline of application execution. In this case, CPU is not well utilized due to skewness:
utilization drops very quickly within a few seconds of execution.

Source: Made by the author.

5.2.1 Hierarchical work stealing

In this work, we propose a hierarchical work stealing strategy for dynamic work

balancing, improving the resource utilization of the underlying system. Our strategy is

composed of two levels the first one focuses on communication within execution threads of

the same worker (internal work stealing, or WS int), and the second focuses on coordination

across threads of different workers (external work stealing, or WS ext). Naturally, thread

communication within a single worker (internal) is more efficient, since access to the

memory is (often) shared. On the other hand, inter-process communication is expensive

because it involves serializing, sending, receiving and deserializing data structures, as we

will see next. Thus, WS int is always preferred to WS ext.

Algorithm 8 details our work stealing strategy, executed in parallel by each execu-

tion thread ti. We assume each thread is already initialized with the workerId it belongs

to, references to work queues from all local cores (threadQueues) used for shared memory

communication and references to remote workers (workerRefs) used for message passing
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communication. The execution proceeds in trials, while unprocessed work exists (lines 4

- 6). Internal work stealing is preferred and performed whenever other threads have work

to share (lines 7 - 14). Otherwise, the current thread schedules a work request to traverse

other workers until some work is successfully stolen, or every worker has been queried,

indicating remote termination (lines 15 - 20). Finally, the algorithm checks if some remote

request is fulfilled and ready to be processed (lines 21 - 29).

Algorithm 8 Hierarchical work stealing

Input:
workerId local worker ID
threadQueues local thread work queues
workerRefs worker references

1: remoteResponseQueue ← fifo-queue()
2: inF inished← false; exFinished ← false

3: requestsOnTheFly ← 0
4: while not empty(remoteResponseQueue) or
5: not inFinished or not exFinished or
6: requestsOnTheFly > 0 do

7: ▷ internal work stealing
8: enumerator ← work-steal-local(threadQueues)
9: if not empty(e) then

10: process(enumerator)
11: inF inished← false; exFinished ← false

12: continue
13: else
14: inF inished← true

15: ▷ external work stealing (request)
16: if not exFinished and requestsOnTheFly = 0 then
17: work-steal-remote(workerId , workerRefs)
18: requestsOnTheFly ← requestsOnTheFly + 1
19: inF inished← false; exFinished ← false

20: continue

21: ▷ external work stealing (consume)
22: enumerator ← pop(remoteResponseQueue)
23: if enumerator ̸= NULL then
24: requestsOnTheFly ← requestsOnTheFly − 1
25: if not empty(enumerator) then
26: process(enumerator)
27: inF inished← false; exFinished ← false

28: else
29: exFinished ← true

For example, consider the execution state presented in Figure 5.8, where induced

subgraphs are enumerated from the graph of Figure 4.2 in parallel. The four available

threads (t’s) are organized in two workers (w’s) and all cores finished their original as-
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signed work, except for t0, which is busy with its own initial work. In case (a), t1 can

accommodate a WSint by extending the second subgraph enumerator from t0, since both

belong to w0. Hence, such operation generates a new subgraph enumerator with the

current subgraph composed of edge (v0, v2) in t1, ceasing its idleness and mitigating im-

balance. In case (b), t2 triggers a WSext because no thread in w1 has work to share.

Thus, t2 sends a work stealing request to w0, which in turn forwards the request to t0. A

separate thread in w0 is then responsible for extending the first non-empty t0 enumerator

and shipping this piece of work back to the requester t2 at w1. Such procedure fills t2

with a new enumerator with a current subgraph composed by edge (v0, v3). Finally, in

case (c), t3 leverages the previous external request to perform a low-cost WSint with t2.

The result is a new enumerator with current subgraph composed of path (v0, v3, v5).

Figure 5.8: Work stealing happens (a)(c) internally among threads of the same worker
or (b) externally among threads of different workers. To reduce network communication,
we use remote work stealing only when no other local thread has work to share.
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Detailed operation of internal and external work stealing strategies are described in
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Algorithm 9. Moreover, detailed description of how remote messages are handled among

different workers is presented in Algorithm 10. Nevertheless, our method is adaptive to

different workload characteristics and does not assume anything about the input distri-

bution. Also, we verify empirically the importance of the two levels of work stealing and

show significant gains on CPU utilization and system’s performance.

Algorithm 9 Work stealing auxiliary functions
1: function work-steal-local(threadQueues)
2: for ref in threadQueues do
3: consumer ← get-consumer(ref )
4: if not empty(consumer) then
5: return consumer

6: return empty-consumer()

7: function work-steal-remote(workerId ,workerRefs)
8: callerId ← workerId

9: callerRef ← workerRefs [callerId ]
10: nextWorkerId ← (callerId + 1)% length(workerRefs)
11: nextWorkerRef ← workerRefs [nextWorkerId ]
12: send-request(callerId , callerRef , nextWorkerRef )

Algorithm 10 Work stealing message handler

Input:

workerId local worker ID
threadQueues local cores references
workerRefs worker references
remoteResponseQueue remote work waiting to be processed
msg current message

1: switch msg do
2: case request(callerId , callerRef )
3: if callerId = workerId then
4: send-response(callerRef , empty-consumer())
5: return
6: consumer ← work-steal-local(threadQueues)
7: if not empty(consumer) then
8: send-response(callerRef , consumer)
9: else

10: nextWorkerId ← (workerId + 1)% len(workerRefs)
11: nextWorkerRef ← workerRefs [nextWorkerId ]
12: send-request(nextWorkerRef , callerId , callerRef )

13: case response(consumer)
14: push(remoteResponseQueue, consumer)
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5.3 A generalized framework for static graph pattern

mining

In this section we describe the design and the implementation of a generalized

framework for static graph pattern mining. Our goal is to organize the modeling and

optimization ideas discussed so far into a framework that facilitates graph pattern mining

tasks at scale. A few features are especially important for a general-purpose framework

for GPM: (1) the framework must be scalable; (2) the framework must be easy to use and

provide robust abstractions to the user; (3) the framework must be portable to different

languages and platforms.

Because our goal is general-purpose extensible graph pattern mining, the frame-

work must be flexible to accommodate the execution environment considered in this work

(Figure 5.1 and be robust enough to support the execution model and optimizations pro-

posed. Figure 5.9 shows the architecture of the proposed framework. Users interact with

the framework via an application programming interface (API) that enables application

modeling using primitives, submission of applications, and handling of results (a). A user

GPM program contains two important specifications: the input graph path and the se-

quence of primitives with their respective parameters. The API translates user commands

to GPM programs that can be handled and scheduled by the master (b). The master

is responsible for organizing the GPM programs to execution, for splitting the programs

into application steps, and for submitting steps for execution in parallel on each worker

(c). Each worker receives a program specification including the input graph path and

the sequence of primitives for execution. Each worker is responsible for reading the input

graph and for dispatching a portion of work among local threads. Workers also commu-

nicate among themselves for efficient work coordination (d). Next we detail the design of

the master and workers.

The master in this architecture has the execution engine as the core element. The

execution engine coordinates the initialization, execution, and termination of workers us-

ing an inter-process communication module of message passing. Details of which and how

this module works goes beyond this discussion, and interested readers are encouraged

to read Section 5.3.1 for details on how one could implement this. The execution en-

gine receives commands from the API, calls the step scheduling module to split generate

from-scratch execution steps (e), serializes the specification and finally, uses the message

passing module to ship user programs for execution in the workers (f).

Workers have a more complex design, as they need to handle the actual GPM

processing and coordination. The core of each worker is the subgraph enumeration mod-

ule, responsible for generation subgraph candidates of interest according to the extension
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Figure 5.9: Generalized graph pattern mining framework.
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and filtering primitives that compose the current application step. The primitives execu-

tor has direct access to the worker local thread pool, used for GPM work tasks such as

subgraph enumeration, filtering, aggregation, graph reading, but also management tasks

such as inter/intra-process communication (g). Before executing primitives, the worker

must ensure the input graph is available in memory. The graph manager is responsible

for reading the input graph (h). During subgraph aggregation through the aggregation

primitive it may be the case where the canonical form of subgraph patterns must be de-

termined for proper pattern aggregation. The canonical labeling module is responsible for

converting enumerated subgraphs into their canonical form for aggregation – this usually
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means leveraging existing canonical labeling software such as Bliss [64] or Nauty [88] (i).

The actual aggregation of subgraph keys and values is performed by the aggregator, which

reads the aggregation specifications and maintain the ongoing local aggregation store (j).

The aggregator provide means to generate output from a GPM execution: a key value

mapping representing the aggregation primitive A(g, h, r). Policies on how to maintain

these outputs, i.e., in memory or in secondary storage or in distributed stores are main

concerns of different implementation strategies also discussed in Section 5.3.1. Finally,

the work stealing manager ensures that the local execution is balanced and thus, it seeks

to minimize execution thread idleness and communication cost of work sharing (k). Work

stealing among local threads is enabled by a shared memory mechanism where threads can

steal subgraph enumeration branches from each other (l). Work stealing among different

workers is enabled by message passing paradigm for inter-process communication, which

typically only happens among processes of different workers/machines (m).

Next we describe the Fractal system: a proof of concept of this proposed frame-

work in the context of large-scale cloud computing platforms. Fractal is built on top of

Spark [139] and can be easily deployed in distributed environments, such as a commodity

cluster [27].

5.3.1 Fractal: A General-Purpose Graph Pattern Mining

System

Fractal [30] is a distributed and parallel system implementation of the generalized

framework for static graph pattern mining. The reference to Fractal as the system’s name

comes from the resemblance of geometric fractals with the recursive nature of subgraph

enumeration algorithms. It is organized with a single application master and multiple

workers, as in Figure 5.1.

The Fractal project is open-source, implemented on Scala/Java OpenJDK (JVM)

8, and its source code is publicly available3. Although its current version is built on top of

Spark 2.04, the design is independent enough to fit other platforms: the only requirement

is a distributed platform where workers are organized in a shared-memory model and a

inter-process communication module is available among workers and master. Additionally,

we extend Spark’s execution model with an actor model provided by Akka 2.5.35, so

we can support communication between workers (Fig. 5.9d). Nevertheless, we highlight

3http://github.com/dccspeed/fractal
4https://spark.apache.org/docs/2.0.0/
5https://akka.io

http://github.com/dccspeed/fractal
https://spark.apache.org/docs/2.0.0/
https://akka.io
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a stronger reason for leveraging Spark’s model: integration and resiliency. Integration

allows the system to be included in the Spark ecosystem composed of distributed storage

solutions [114] and resource scheduling and multi-tenancy in large-scale processing on

clusters [51, 126]. We also leverage the resiliency features of Spark, especially the Resilient

Distributed Datasets (RDD) [139] abstraction, to export Fractal results: subgraph lists

and aggregation results. In Section 5.3.1.3 we present in detail the resiliency aspect that

Spark’s execution models brings to Fractal. Next, we discuss the details and challenges

concerning Fractal’s implementation and operation: system initialization – Section 5.3.1.1,

scheduling and execution – Section 5.3.1.2, primitives execution – Section 5.3.1.3, work

stealing – Section 5.3.1.4, and programming interface – Section 5.3.1.6.

5.3.1.1 System initialization

Figure 5.10 shows the initialization steps of Fractal. The master is the first to

start, upon a context start call from the API (1). In this step, all the resource negoti-

ation parameters necessary to setup the distributed environment are provided: number

of workers, number of execution threads per worker, master memory upper bound, and

workers memory upper bound. The next step is a start message from the master to the

workers, containing all the resource parameter specifications configured during the context

start (2). Worker initialization includes the creation of internal structures – including a

global identifier for the worker and each one of its execution threads. Because the master

acts as a central point for hand-shaking among workers, each worker sends a registra-

tion message to the master, marking the end of the initialization of workers (3). The

remaining information each worker needs is the Akka actor reference for message passing

communication with other workers. This is accomplished by a broadcast message from

the master to the workers, containing all the worker references (4). Thus, when the mas-

ter acknowledges the registration of each expected worker, it broadcasts their addresses.

After this, the broadcast resumes and the context is marked as started (5) Thus, every

worker knows how to reach the others, in addition to the master.
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Figure 5.10: Fractal initialization.
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Source: Made by the author.

5.3.1.2 Scheduling and execution

Spark’s batch computation model is used to represent and to schedule application

steps in Fractal. Thus, each application step corresponds to a Spark job, and the com-

putation performed by each execution thread corresponds to the processing of a Spark

partition in the underlying system. Figure 5.11 shows the scheduling operation of an

application step. The input for this process is a pair of (1) input graph and (2) sequence

of primitives for execution.

First, the scheduling manager determines the step boundaries of the workflow

of primitives submitted. Step boundaries are determined by the from-scratch execution

module, which marks as boundary where there is aggregation primitive (see Algorithm 7).

In the Spark computation model, this is transparently implemented using the notion of

pipelined operators [139], and in our case, pipelined primitives. Inspired by the notion of

wide and narrow dependencies between distributed collections [139], this pipelined design

, which allows two or more computations be executed in a single step, offers an advantage

for long-running applications: it enforces global synchronization only when such event is

inevitable, i.e., during aggregations.

Second, the from-scratch execution module creates the cumulative steps to ensure

a space-bounded subgraph processing in later steps. Then, pairs of input graph and appli-

cation steps are scheduled for execution in the Spark execution engine. For each execution

step, we create an RDD composed of m partitions, one for each available execution thread

in the environment (Figure 5.1). Thereby, partition identifiers in Spark correspond to the

thread identifiers in Fractal. This part covers all communication requirements between

master and workers (Figure 5.9c).

A step execution in the workers starts by checking whether the input graph is
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Figure 5.11: Fractal step scheduling.
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Source: Made by the author.

already in-memory, in case it is not the system asks the local graph manager start reading

the input graph. Input graphs may be stored on the local file system or on HDFS [114].

After that, the worker is ready to start executing the sequence of primitives submitted

as an application step. Thus, each execution thread in the system executes the same

instruction pipeline, over different portions of the data.

5.3.1.3 Implementing GPM primitives in Fractal

Primitives in Fractal are implemented by pipelining Scala functions, which are

combined, serialized and shipped for execution in the workers. To accomplish the proper

execution ordering, Fractal makes sure the output of an earlier primitive is used as input

to the next primitive. For instance, an extension (E) followed by a filtering (F) means

that, each valid subgraph produced by the extension is verified by the downstream fil-
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tering function. In a distributed setting, each execution thread of every worker starts

the execution over an empty subgraph enumerator and an initial partition of extension

units from the input graph, determined on-the-fly using its unique thread identifier. For

both vertex- and pattern-oriented extension types (TV or TP (Ä)), the initial extensions

are single vertices, while edge-induced extension type use single edges (TE, in Figure 4.2).

The aggregation primitive is a bit more elaborated than that, because it has the

potential of becoming the performance bottleneck in case heavy or skewed aggregations.

Fractal adopts the two-level pattern map introduced in Arabesque [121], but specifically

designed to work on any type of keys and values. Specifically, local aggregation (Definition

10) is performed by each execution thread in the system. Then, partial aggregations from

each execution thread are flushed down to Spark shuffling system for final aggregation

as distributed datasets of pairs composed of keys and values. More discussion on this

reliable downstream processing is given in Section 5.3.1.5.

5.3.1.4 Implementing work-stealing in Fractal

We implement work stealing directly over the subgraph enumerator abstraction

(see Figure 5.4). In particular, we make the extension function (extend()) thread-safe and

efficient, to allow a fine-grained work sharing among execution cores. Upon an extend()

call, Fractal copies the subgraph prefix, consumes an extension (thread-safe), and adds

the new extension to the prefix of the new enumerator. Because we end up with a very

short critical section (consumption of extensions), work stealing in Fractal comes with

a small overhead and little contention among execution threads. Indeed, the depth-

first enumeration maintains one enumerator per extension level, which can be locked

and consumed independently. Subgraph enumerators also facilitate work sharing among

distributed workers: a subgraph enumerator (prefix) represents a unique independent

piece of work that can be shipped to any worker for processing.

We highlight that work stealing messages are completely asynchronous and do not

interfere with the ongoing execution: extra threads are dedicated to the coordination

process.



5.3. A generalized framework for static graph pattern mining 87

5.3.1.5 Enabling reliable downstream processing in Spark

Reliable aggregation is an important feature for distributed systems that handle

huge amounts of data. Specifically, one must be able to reduce the working set of the

processing pipeline as soon as possible to mitigate performance bottlenecks concerning

memory management and network communication [29]. In general, filtering primitives in

subgraph enumeration applications can be used for that purpose. However, aggregation

primitives may still suffer from huge working sets in cases where the selectiveness of fil-

tering is suboptimal. In this scenario, the cost of materializing working sets (subgraphs)

in-memory for downstream aggregation and processing in complex data analytics pipelines

can easily become impractical. On the other hand, data-parallel systems usually adopt

streaming immutable models [139] that prevent user’s application from reusing objects

or even performing inplace computations for conscious use of available memory. Actu-

ally, such computation model limitation is the main reason for performance overheads in

subgraph enumeration applications running over standard data-parallel models [26].

Given this challenge, we defend that any distributed subgraph enumeration sys-

tem should enable both: (1) efficient subgraph enumeration; and (2) efficient subgraph

aggregation. The first feature is assessed via memory-efficient subgraph enumeration

primitives (Section 5.1) along with optimized resource utilization (Section 5.2). The sec-

ond feature is implemented using a reliable subgraph aggregation routine that alternates

between a producing phase, where aggregation buffers are filled; and a consuming phase,

where aggregation buffers are consumed and dispatched for downstream processing by a

data-parallel framework (in Fractal we leverage Spark for this). Figure 5.12 describes this

operation. The operation starts with a producer thread running and a consumer thread

waiting for produced key/value items from aggregation. Specifically, the subgraph enu-

meration module (SEM) generates subgraph candidates one by one as a stream (a). For

each subgraph generated, the aggregator module (AGG) applies the aggregation primitive

to the current subgraph and forwards a key/value aggregation item to a bounded key/-

value map (b). The boundness of this map is essential in our design since our goal is to

prevent this map from growing indefinitely and causing out of memory crashes. Thereby,

whenever this map fills entirely a change of state is triggered where the producer stops

generating new subgraph candidates, goes to a waiting state, and immediately after that

the consumer thread starts running. The consumer is then responsible for taking each key

value item produced and aggregated in the intermediate bounded map and for forwarding

this item to downstream shuffling or persistency subsystem (c). This module is imple-

mented by data-parallel systems such as Spark, which leverages primary and secondary

storage to produce outputs (e.g. for persisting a key/value distributed datasets) or to

reorganize key/value items for a distributed data shuffling [139].
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Figure 5.12: Reliable downstream processing of subgraph aggregations
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An important advantage of this approach is that fixed-sized buffers prevent the

aggregation process from out-of-memory errors. Also, because Fractal alternates between

producing and consuming states in batches, it is feasible to tune the size of the bounded

key value map to an adequate value given the amount of memory available for execution.

The outcome is that, from the point of view of a practitioner, the output of a subgraph

aggregation is produced reliably and totally partitioned as distributed datasets, which can

be used as input to other data analytics pipelines including machine learning algorithms

[91], real-time streaming processing [6], and SQL-like distributed processing [7].

5.3.1.6 Fractal programming interface

Designing a flexible and expressive API for distributed GPM applications is chal-

lenging. An API is expressive when it is easily readable and interpretable, and it is flexible
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when it is capable of representing a wide range of applications. Fractal’s API is subgraph-

centric [121, 106, 17] in that it exposes a small set of intuitive and modular operators to

construct complicated GPM applications. All operators act on a state object, called a

fractoid.

A fractoid holds the state of a Fractal application during the execution process.

Such state includes an array of primitives representing the user workflow and any ag-

gregation result required for computation. One can derive a fractoid from either another

fractoid or from the input graph. Fractal supports three types of fractoids – edge-induced,

vertex-induced and pattern-induced – matching that correspond to the extension type of

interest (TE or TV or TP (Ä)). The choice of which type to use is application dependent.

and, therefore, must be chosen by the data analyst at the beginning of a Fractal appli-

cation. which must be chosen by the user according with her GPM application. Since

the type of a fractoid also determines which extension type the system will employ to

enumerate the subgraphs, it must be defined by the user at the beginning of her appli-

cation. By default, fractoids also carry default implementations of extension methods

for generating all canonical extensions from a search space (MC or MP (Ä)). Figure 5.13

shows the standard Fractal API.

The entry point to an application is the FractalContext, responsible for configuring

and initializing all the required resources to build and run Fractal routines. Since our

current implementation runs on top of Spark [139], we instantiate a FractalContext ([FCTX

-INIT]) directly from a SparkContext. In order to obtain the first fractoid, the user must

first create a fractal graph from the context by passing an input path ([FCTX-IG]) and

then ask for a vertex-induced fractoid ([FG-V]), an edge-induced fractoid ([FG-E]) or a

pattern-induced fractoid ([FG-P]) (see Listing 5.1 for a vertex-induced example).

Listing 5.1: Initialization of a vertex-oriented Fractal application.
1 val sc = new SparkContext(..)

2 val fctx = new FractalContext(sc)

3 val graph = fctx.inputGraph(graphPath)

4 val vfrac = graph.vfractoid()

Workflow operators are used to describe the processing performed over fractoids in

order to explore the space of solutions (subgraphs) or must be explored in the input graph.

The expand function ([FRAC-E]) represents the extension primitive (E) and enumerates

subgraphs by extending the subgraphs given as input. Considering a GPM application

that uses the edge-induced extension method, an m-expansion over k-edge subgraphs

generates all (and unique) subgraphs of size (k+m) edges. The filtering primitive ([FRAC

-F]) is used to prune the search space based on local information (e.g. clique kernel) or

input from previous steps (e.g. frequent subgraph mining kernel) – invalid subgraphs are

not further expanded and explored. Our next workflow operator ([FRAC-REPEAT]) is used
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Figure 5.13: Fractal: Standard API

// [FCTX-INIT]

new FractalContext(sc)

FractalContext {

// [FCTX-IG]

def inputGraph(path: String): FractalGraph

}

FractalGraph {

// [FG-V]

def vfractoid(): Fractoid // TV ,MC

// [FG-E]

def efractoid(): Fractoid // TE ,MC

// [FG-P]

def pfractoid(p: Pattern): Fractoid // TP (ρ),MP (ρ)
}

Fractoid {

// [FRAC-E]

def expand(n: Int): Fractoid // E(T,M)

// [FRAC-F]

def filter(s: Subgraph): Fractoid // F (p)

// [FRAC-REPEAT]

def repeat(n: Int): Fractoid

// [FRAC-A]

def aggregate(key: Subgraph => K,

value: Subgraph => V,

reduce: (V,V) => V): RDD[(K,V)] // A(g, h, r)
}

Source: Made by the author.

to keep applications clean and concise. This operator chains a workflow fragment n times,

simplifying the implementation of iterative algorithms.

The operator [FRAC-A] is used to get the result of the current workflow according to

a given aggregation plan: key, a function to obtain an aggregation key from the processed

subgraph; value, a function to obtain an aggregation value from the processed subgraph;

and reduce, a function used to combine values sharing the same key. The result of an

aggregation is exported as a Spark key-value RDD, which enables downstream processing

in an integrated data-parallel environment.

Fractal’s API allows an intuitive and interactive experience since every partial
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result of a workflow (fractoids) can be easily executed and verified separately. Users can

combine any sequence of primitive components and perform successive refinements in their

analysis. Existing systems lack such support since they view applications as atomic jobs

waiting to be executed in batch mode [106, 59]. Next we present the implementation of

a few kernel implementations.

Example 5.3.1. (POSE k-MC ) Listing 5.2 shows the code excerpt for motif counting

using a pattern-oblivious paradigm. The algorithm establishes that the subgraphs will be

induced by vertices, by calling vfractoid. Next, we expand the initial empty fractoid by

generating all unique subgraphs with k vertices using the call expand(k). Then, we use

the aggregate operator to configure an aggregation represented by pairs of pattern::count.

More specifically, we must specify the aggregation key (s.pattern()), the initial value one

(1L) and the reduction summing function. The output is an RDD of pairs containing

patterns (motifs) and their respective frequencies in the input graph.

Listing 5.2: Motifs application.
1 val fc = new FractalContext(sc)

2 val fg = fc.inputGraph(path)

3 val n = fg

4 .vfractoid() // vertex-induced subgraphs

5 .extend(k) // k-vertex induced subgraphs

6 .aggregate(s => s.pattern(), s => 1L, _ + _) // count by pattern

7 .reduceByKey(_ + _) // Spark API: finish aggregation

Example 5.3.2. (POSE k-CL) Listing 5.3 shows the code except for clique counting

using a pattern-oblivious paradigm. A vertex-induced workflow is built with primitives

(EF )k: k extensions, each one of those followed by a cliques checking, ending with an

aggregation. In this case, all values 1L for counting have the same arbitrary key 0L

because we are interested in the absolute counting. By having the partial counts as pairs

(0,count), we are able to finish counting using the standard Spark API that finishes

aggregation of partial counts.

Listing 5.3: Motifs application.
1 val fc = new FractalContext(sc)

2 val fc = new FractalContext(sc)

3 val fg = fc.inputGraph(path)

4 val n = fg

5 .vfractoid() // vertex-induced subgraphs

6 .extend(1).filter(isClique)

7 .repeat(k) // k-cliques

8 .aggregate(s => 0L, s => 1L, _ + _) // (0,count)

9 .values.sum() // Spark API: sum all values
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5.4 Evaluation

In this section we evaluate Fractal, a proof of concept distributed and parallel sys-

tem that implements our GPM modeling proposal (Chapter 4). We evaluate Fractal from

a perspective of system’s runtime performance and we do not consider in our study other

important evaluation aspects such as energy consumption in parallel architectures, which

we highlight as promising future work in Section 7.1. In particular, our goal is to show

that: (Section 5.4.1) Fractal is competitive in terms of performance efficiency compared to

general-purpose systems and specialized algorithm solutions; and (Section 5.4.2) Fractal’s

design features are effective in providing a reliable, resource efficient, and scalable GPM

executions.

Hardware. All experiments, unless otherwise specified, were run on a cluster with 10

machines, each one having an Intel Xeon E52680 with hyperthreading (14 cores, 28 execu-

tion threads) and 25 MB cache, 500 GB RAM, running CentOS Linux 3.10. The machines

were connected by Gigabit Ethernet.

Datasets. In Table 5.2 we describe the graphs used in our evaluation. Note that such

datasets were also used in previous works in order to evaluate graph mining algorithms

and systems [34, 1, 121]. In Mico [34], vertices are authors (labeled with their research

field) and edges represent co-authorship. Patents [48] has patents published in US as

vertices and their citations as edges; the labels on vertices are given by the year in which

the patents were released. Youtube [23] contains videos posted from February 2007 to

July 2008. In this graph, there is an edge between two vertices if their videos are related.

The label of a vertex is computed by combining the video’s rating and length. Orkut [134]

is a single-labeled network with vertices representing users, and edges, friendships among

them. Throughout this section we refer to these graphs by their name followed by a suffix

indicating whether that specific version is single-labeled (-SL) (i.e. effectively unlabeled

graphs) or multi-labeled (-ML). Confidence intervals are presented for a confidence of

95%.

Table 5.2: Fractal evaluation: real-world datasets used in the experiments.

|V (G)| |E(G)| max.deg. avg.deg. labels

Mico (MI) [34] 100K 1M 1.3K 22.3 29

Patents (PA) [48] 2.7M 13.9M 789 10.1 37

Youtube (YO) [23] 4.5M 43.9M 2.5K 19.1 108

Orkut (OR) [134] 3.07M 117.1M 33.3K 76.2 -
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JVM-based Baselines. We compare Fractal (a JVM-based system) with several spe-

cialized JVM-based distributed algorithms including those for Motifs (MRSUB [110]),

subgraph querying (SEED [76]) and Cliques (QKCount [39]). We also compare Fractal

with general-purpose JVM-based systems, such as Arabesque [121], and GraphFrames [26]

and GraphX [45] where possible. The GPM kernels used are implementations of problems

described in Section 2.3.

5.4.1 Fractal: Comparative Performance

Fractal supports multiple GPM kernels at once, while most existing GPM sys-

tems are kernel-specific or lack the programming flexibility and improved performance of

Fractal. In this section, we evaluate four kernels – motifs, cliques, FSM, and subgraph

querying – considering a mixture of general-purpose GPM systems and kernel-specific dis-

tributed implementations in each scenario. In this section we leverage available baseline

systems to compare against implementations in Fractal.

Unlabeled motifs (k-MC ). Figure 5.14 compares the performance of Fractal with

baselines (Arabesque and MRSUB) on the Motifs benchmark. Fractal results consider

a POSE solution to k-MC . Considering the single-labeled input graphs (Mico-SL and

Youtube-SL), we observe that when the amount of work is small, Arabesque outperforms

Fractal (see Mico-SL for 3-MC ). Fractal pays a small setup overhead to support its work

stealing environment and such overhead becomes significant when the amount of work is

small. However, Fractal becomes more efficient as we target larger subgraphs (4-MC and

5-MC ) or when a larger network is involved (Youtube-SL), obtaining a speedups of up

to 1.6× for Mico-SL and 3.10× for Youtube-SL. MRSUB, a recent specialized approach

performs worse than the other two methods across the board (running out of memory in

one instance).

Labeled motifs (k-MC ). For labeled graphs, we compare the same POSE implemen-

tation of motifs kernel in Fractal against Arabesque system that supports multi-labeled

motifs. Despite runtime comparison we highlight in this experiment how labeled graphs

may increase the number of patterns for counting. Figure 5.3 shows the results. Fractal’s

load balancing and from scratch computation contribute to an efficient usage of resources,

allowing more available memory for mining patterns (up to 855, 010) and improving the

overall runtime by up to three orders of magnitude. When we have Mico-ML as input,

we see an interesting behavior. The number of mined patterns is huge due to the num-
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Figure 5.14: Motifs runtime on Mico-SL and Youtube-SL.
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ber of labels in the network, which significantly hurts Arabesque’s performance. More

specifically, Arabesque took 2.02× longer to finish for size 3 motifs and failed due out-

of-memory error for motifs with 4 vertices and larger, while Fractal completes in 78.12

seconds. Indeed, Arabesque has to keep one ODAG for each one of the 855, 010 patterns

with 4 vertices, which overwhelms the available memory causing the observed error (bot-

tleneck). Even when the available space is enough to keep the ODAGs in memory, the

cost to broadcast this intermediate state between every superstep dominates Arabesque’s

performance. This is exemplified by Fractal’s speedup of 570.57× on Youtube-ML. We

drill down further on such memory issues in Section 5.4.2.1. Such gain is an outcome of

our reliable subgraph processing with bounded space required (Section 5.1) along with

efficient aggregation design in Fractal (Section 5.3.1.5).

Table 5.3: Motifs runtime on Mico-ML and Youtube-ML.

Graph Instance # Patterns Arabesque (seconds) Fractal (seconds)

Mico-ML
3-MC 16, 593 13.46± 0.07 6.65± 0.28

4-MC 855, 010 out-of-memory 78.12± 0.49

Youtube-ML 3-MC 636, 947 17, 613.57± 390.81 30.87± 0.47

Triangles (3-CL). We next examine the performance of the triangle counting appli-

cation on Fractal, Arabesque, GraphFrames and GraphX in Figure 5.15. Fractal im-

plementation for triangles (3-CL) considers a POSE paradigm implementation. Fractal

significantly outperforms the competing methods on three of the four datasets (up to an

order of magnitude better), while being slightly slower than Arabesque on the smallest

dataset due to setup overhead.

Cliques (k-CL). We evaluate the cliques application (k > 3) on Fractal and baselines

(Arabesque, GraphFrames and QKCount) in Figure 5.16. Fractal’s implementation uses
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Figure 5.15: Performance on Triangles benchmark. GraphFrames ran out of memory for
Orkut-SL.
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the same POSE paradigm approach as used for triangles. Fractal outperforms Arabesque

in almost every scenario. On Youtube-SL the performance gains are even more obvious

(see Figure 5.16b). Fractal obtains speedups that range from 5.19× to 12.87× against

Arabesque in all configurations considered. On this larger dataset, since Arabesque has to

keep the subgraphs (compressed in special data structures called ODAGs) from one step

to another, this imposes extra memory and network costs to maintain that information

consistent among workers. Arabesque, however, is able to mine 3-cliques faster than

Fractal on Mico-SL (again due to the setup overhead).

Fractal competes well with the state-of-the-art, QKCount (a distributed algorithm

for clique counting implemented over MapReduce/Hadoop [27]), outperforming it on many

settings, while being slower on Mico-SL for cliques of size six. Fractal’s mechanism to

control memory pressure, efficient work stealing and its method to leverage pipelined com-

putations and extension primitives (described in Chapter 4) allow it to compute cliques

efficiently, without the need to keep any intermediate state. QKCount, on the other

hand, must generate a huge intermediate state of subgraphs to perform enumeration us-

ing a MapReduce computing framework, which introduces substantial overhead of external

memory accesses. Such design simplifications lead to performance competitive with the

state-of-the-art.

FSM (k-FSM -³). We evaluate the performance of the FSM application implemented

over Fractal, Arabesque, and ScaleMine [1], a high-performance specialized implementa-

tion. In this experiment Fractal’s implementation approach is POSE. Scalemine relies

on a two phase approach: in the first phase it estimates search-space loads and uses that

information for load balancing in the second phase. While Scalemine produces exactly
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Figure 5.16: Cliques runtime on Mico-SL and Youtube-SL. GraphFrames often ran out
of memory.
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the same set of frequent patterns, as Fractal and Arabesque, it does not visit all the

subgraphs of a given pattern (i.e., the frequency counts cannot be exact). For this set

of experiments, we consider two labeled graphs and we vary the minimum support of the

algorithm (see Figure 5.17).

Figure 5.17: FSM performance. Fractal’s stateless characteristic allows competitive
scalability with Scalemine.
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While Fractal has the initial setup overhead (for work stealing), Scalemine’s first

phase (also used for load estimation) can be quite expensive especially when there is less

overall work [1]. Fractal’s stateless operation w.r.t. intermediate state provides a better

scalability against Arabesque, showing speedups of up to 4.57× (when the support is

20k). For higher values of support, it outperforms ScaleMine (in spite of being an exact

algorithm) due its fast and balanced enumeration strategy, achieving a speedup of 4.12×

when the support is 24k. For lower values of support, Scalemine outperforms Fractal.

This is a surprisingly good result for Fractal, since Scalemine is implemented on C++
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with MPI, demonstrating the effectiveness of work stealing, limiting memory pressure and

graph reduction optimizations within Fractal.

Pattern Querying (Ä-PQ). In Figure 5.19, we evaluate the performance of the pattern

querying application on Fractal, SEED and Arabesque. SEED is the state-of-the-art

specialized subgraph enumeration system implemented over Hadoop, which computes

larger subgraphs by joining smaller ones. We use the same queries supported by SEED [76]

to evaluate our system (see Fig. 5.18). We implemented the same queries in Arabesque,

for comparison with a general purpose approach for GPM. Fractal’s implementation in

this experiment leverage the PASE paradigm since a pattern query is easily expressed

as a subgraph enumeration routine that lists subgraphs isomorphic to a given unique

reference pattern.

Figure 5.18: Queries for pattern querying evaluation.

q1 q2 q3 q4 q5 q6 q7 q8

Source: Made by the author.

Figure 5.19: Fractal outperforms SEED in most configurations, except for those where
SEED’s execution plan leverages the overlapping substructures (e.g., q7).
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Considering the Patents-SL graph (Figure 5.19a), SEED outperforms Fractal only

for q7, because the execution plan generated in this case is most effective. Specifically,

SEED computes the matches of the pattern q3 and joins them to obtain q7, reducing

significantly the subgraph enumeration cost. Meanwhile, Arabesque executions finish

successfully only for queries that are easier to enumerate (q1 and q4) or have fewer edges

(q2 and q3). The other executions fail with out-of-memory errors since the number of

subgraphs and their sizes start to pressure the memory, even for compressed represen-

tations like Arabesque’s ODAGs. Fractal’s pattern-aware subgraph exploration (PASE)
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and stateless enumeration allow a more efficient pattern querying, specially compared to

edge-induced approaches like Arabesque, across the board.

On Youtube-SL (Figure 5.19b), SEED also performs best when the query allows

an execution joining plan with overlapping structures. Indeed, SEED outperforms Fractal

for cliques (q1, q4, and q5) and for q7, because of that pattern’s symmetry. In the remain-

ing configurations, Fractal outperforms SEED (q2, q6, and q8) or remains competitive

(q3). Overall, again Fractal demonstrates competitive performance with a state-of-the-art

specialized baseline.

5.4.2 Fractal Drilldown

Fractal’s key systemic contributions (memory demand reduction, hierarchical work

stealing and graph reduction) were found to be useful across a range of GPM kernels. We

next drill down on some of those in turn, with specific kernels.

5.4.2.1 Memory footprint analysis

In this section we drill down on the memory costs of a couple of applications w.r.t

the memory optimization facilitated by Fractal’s computation model. Specifically, our

goal is to evaluate how an efficient subgraph processing (Section 5.1) and a carefully

designed subgraph aggregation and downstream processing (Section 5.3.1.5) are essential

to high-performance distributed GPM computation. Our metric is the average memory

usage among all workers in the execution. A lower value of this metric indicates a better

memory footprint, i.e., less prone to out of memory errors or long garbage collection

pauses (which may cause performance degradation and unpredictability).

We consider the following applications for this experiment: (1) k-CL, representing

applications in which the enumeration phase is the bottleneck; and (2) k-MC , an appli-

cation that not only enumerates all subgraphs up to a given depth but has to perform

expensive isomorphic checks and to aggregate pattern counts. Both Fractal implemen-

tations are POSE. We use Arabesque as baseline for this analysis since it is the only

distributed system for general-purpose GPM with source code available. Table 5.4 sum-

marizes our results.

For the first scenario, we measure the memory footprint of the cliques application



5.4. Evaluation 99

Table 5.4: Memory per worker.

Dataset Instance Arabesque (GB) Fractal (GB) ×

Youtube-SL

3-CL 8.5± 1.9 10.5± 0.2 0.8×

4-CL 10.6± 1.8 10.5± 0.2 1.0×

5-CL 16.7± 2.6 10.9± 0.2 1.5×

6-CL 18.9± 2.3 10.9± 0.2 1.7×

Youtube-ML

3-CL 22.9± 1.2 10.9± 0.1 2.1×

4-CL 57.5± 1.4 12.8± 0.1 4.5×

5-CL 117.4± 1.4 11.8± 0.1 10.0×

6-CL 204.3± 1.1 11.6± 0.0 17.6×

Mico-ML

3-MC 0.2± 0.0 0.4± 0.0 0.6×

4-MC 1.8± 0.3 0.4± 0.0 4.9×

5-MC 46.9± 1.0 0.9± 0.3 49.9×

over a single-labeled version of the Youtube graph (Youtube-SL). We see that initially Ara-

besque performs better than Fractal (0.80× Fractal’s memory requirements), attributed

to the additional structures used by Fractal to coordinate the execution cores such as

work-stealing routines. However, while Fractal exhibits a fairly constant memory cost

across all evaluation depths (between 10.48 and 10.87 GB), Arabesque significantly in-

creases its memory requirements when executions require a deeper exploration level and,

then, more subgraphs (ODAGs) are kept across computation steps, which imposes signifi-

cant additional cost for the executions regarding memory management and data shuffling

(massive network communication). Fractal achieves reduction factors of 1.01× to 1.74×

w.r.t Arabesque.

Next we consider the multi-labeled network, Youtube-ML. Fractal is able to keep

the memory requirements relatively constant (range from 10.88 and 12.84 GB). Some

variation is expected due to the non-deterministic behavior of the Java Virtual Machine

(e.g., garbage collection) in multi-threaded environments (range from 10.88 and 12.84

GB). Meanwhile, in Arabesque, another GPM system that levers JVM, we see a significant

increase in the memory used by workers, which is a direct outcome of how the system

keeps its intermediate state across enumeration depths. Specifically, subgraphs are kept

in the memory of each worker in a compressed data structure (ODAG) per pattern [121].

As there are more patterns templates in a multi-labeled network, Arabesque must keep

more ODAGs in memory, increasing the working memory of the workers. In particular,

the workers of the baseline system require an average of 204.28 GB of memory in the

enumeration depth of five, while Fractal needs only 11.58 GB. This represents a reduction

factor of 17.64× regarding memory.

Finally we consider the Motifs application. In this example, we show that the

intermediate state of workers significantly grows in the baseline system as we increase the
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exploration depth (even for moderately sized) graphs. Indeed, the amount of memory

used by Arabesque increases 49.86×. On the other hand, Fractal’s executions require no

more than 0.94 GB of memory per worker (on average).

5.4.2.2 Hierarchical Work Stealing

We start by revisiting the 4-cliques use-case of Section 5.2 to show how resource

utilization (CPU) can be significantly improved by employing the work stealing strategy

described in this section. Figure 5.20 presents the new CPU utilization of Fractal, as a

counterpoint to the naive strategy described previously and evaluated in Figure 5.7. We

can see that the CPU utilization remains high during the whole execution, which results

in a new total runtime of 73.8 seconds, representing 3.58× speedup compared to the naive

solution.

Figure 5.20: 4-CL with and without dynamic work balancing. Good CPU utilization
throughout the whole execution. Runtime: 73.8s.

(a) Work stealing OFF

(b) Work stealing ON
Source: Made by the author.

Next we detail the benefits of hierarchical work stealing environment within Fractal.

We focus on the FSM algorithm, which is a multi-step application and, consequently, has

the potential to exhibit a richer per-level behavior. The input graph considered is Patents-
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ML and we set the support to 20k for this drilldown experiment.

Since our work stealing strategy is composed of two levels of balancing (internal

and external), our evaluation consider four configurations: 1.Disabled, where we disable

both levels; 2.Internal, where we enable only the internal work stealing (WS int); 3.Exter-

nal, where we enable only the external work stealing (WS ext); and 4.Internal+External,

where we enable both levels (WS int + WS ext), representing our complete strategy. We

seek to evaluate the effectiveness of each of them in mitigating imbalance. Figure 5.21

presents the execution times of the parallel tasks discriminated by step and scenario.

The rows represent the five fractal steps and columns represent the four working stealing

configurations. The y-axis is the individual runtime of each task (x-axis).

In the first configuration (1.Disabled), we can see the raw imbalance in load. As

expected, the execution becomes more skewed for later steps, as we are enumerating bigger

subgraphs (step 4 is a extreme case, for example). However, we observe a significant

improvement in skew reduction across all steps when the internal work stealing is enabled

(2.Internal). Note that, in this case, some imbalance across workers still exists since

the original work is only allowed to be shared among threads in the same process. In the

next configuration, we enabled only the external work stealing (3.External). We may see a

better load balancing among the tasks, as each one has more options to steal work, but the

communication overhead of work requests increases the execution time in comparison with

the internal work stealing alone (2.Internal). Finally, the configuration which combines

both strategies (4.Internal+External) results in near perfect load balancing as well as

reduces the communication overhead in Fractal.

5.4.2.3 COST analysis

Motivated by [89], we evaluate Fractal against state-of-the-art single-thread graph

mining algorithms in terms of the COST metric. The COST is defined as the number of

execution threads a system needs to outperform an efficient single-thread implementation.

We lever recent single threaded JVM based implementations for this purpose. For the

Motifs (k-MC ), Cliques (k-CL) and Pattern Querying (q2 and q3) kernels (Ä-PQ) we use

Gtries [32, 108]. We consider queries q2 and q3 for Pattern Querying, as their amount

of work is satisfactory to our analysis in both Fractal and baseline. For FSM we use

Grami [34] and for triangle counting, we use Neo4j as baseline, which is a standard

open-source single-node graph processing system. Fractal’s implementations are POSE

approaches, except for pattern querying, which adopts a PASE paradigm.

Representative results for motifs, cliques, FSM, and pattern querying are reported
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Figure 5.21: Work stealing evaluation. Imbalance becomes evident with load balancing
strategies disabled (1.Disabled). Internal work stealing allows a good intra-worker load
balancing at low communication cost (2.Internal). External work stealing allows an ef-
ficient load balancing at a higher communication overhead (3.External). Applying both
strategies gives the best trade-off between load balancing and communication overhead
(4.Internal+External). Times of each step are noted on top of each chart.
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in Figure 5.22. One may observe that the COST typically range from 3-4 threads. For

instance, Fractal beats Gtries for motifs (36.5k seconds) with 3 cores (≈ 30k seconds).

Fractal outperforms both Gtries for cliques (2416s) and Grami (1154s) when using 4 cores,
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Figure 5.22: COST analysis: number of cores that Fractal needs to reach state-of-the-art
single-thread methods.
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taking 844s and 872s respectively. Finally, Fractal outperforms the baseline for Graph

Querying in both queries: the baseline evaluates q2 in 2328s against 1055s for Fractal with

4 threads and q3 in 474s against 289s for Fractal also with 4 threads. These numbers are

representative for a large majority of our experimental settings. The positive exceptions to

this (lower COST) arise in long-running tasks dominated by enumeration computations

– here we see COST values as low as 2 threads (e.g. motifs on Mico). The negative

exceptions (higher COST) arise when overheads dominate due to short duration tasks.

For example, with the 3-cliques counting application on Youtube the COST value blows

up to 16 threads (of Fractal). The overheads associated with initialization, actor set up

and thread management cause this blowup.

Figure 5.23 shows additional results for triangle counting (3-CL). In a scenario such

as Orkut-SL, we observe that Fractal is able to outperform Neo4j built-in implementation

with four threads, continuing to scale up to 28 execution threads. In other datasets with

a reduced number of triangles (and consequently, reduced number of general cliques),

Fractal does not scale below the single-thread line – this is the expected case for Youtube-

SL.

5.4.2.4 Scalability

We review the strong scalability of Fractal on four of our most time-consuming

kernels (see Figure 5.24). We observe that if sufficient work exists the efficiency of Fractal

is reasonable when compared to a single node (28-thread) implementation. For motifs
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Figure 5.23: Triangles COST analysis.
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kernel, Fractal achieves around 85% efficiency. For cliques kernel, Fractal achieves around

90% parallel efficiency on Mico-SL and Youtube-SL. The efficiency for motifs and cliques

is higher because enumeration dominates the cost of these applications. For FSM, a

challenging task for most graph systems (due to the number of aggregations and data

transfers required), we observe around 75% parallel efficiency except when there is insuf-

ficient work (Youtube-ML,support:255K). For subgraph querying, the efficiency depends

on the query: patterns that are harder to enumerate (q6) achieves better performance

in Fractal – around 80% efficiency – than more symmetric and dense ones (q2, q7) –

around 65% efficiency. Aggregations in the latter two applications lead to increased data

movement costs, limiting parallel efficiency.

5.5 Understanding limitations associated with design

choices

In this section we review some of the design assumptions and where each optimiza-

tion may not pay off, including overhead costs.

The assumption that the input graph is replicated on each worker. In this

work we consider only exact GPM problems and thus, the combinatorial explosion of

subgraph enumeration can be observed even for small graphs (with hundreds of vertices).

Therefore, we argue that the real bottleneck in this setting is not the memory demand

for storing the input graph itself but the demand to manage the subgraphs, which is
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Figure 5.24: Fractal scalability.
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handled in Fractal by our depth-first subgraph enumeration and recomputation of steps.

Nevertheless, extensions of this design to partitioned graphs can be proposed by adopting

a global memory space for the input graph that can optimize accesses to graph data

displaying the power-law property [36, 78], which is a reasonable assumption in most

application scenarios for GPM. Our design could also benefit from these global memory

spaces to implement more elaborate queueing policies for our hierarchical work stealing

scheme.

Overheads associated with reliable subgraph enumeration. This optimization

does not pay off when available memory on the machine exceeds the needs of the ap-

plication. In such cases there is no need to re-compute as one may process directly by

maintaining relevant embedding lists. We observed this in several short-duration tasks.

For example, small motifs (Figure 5.14), and triangles on smaller datasets (Figure 5.15).

Note that the overhead cost associated with enabling this optimization is negligible but it

can lead to significant load imbalance (see Sec. 5.2). We next discuss the overheads asso-

ciated with the work stealing component of Fractal which seeks to alleviate this problem.

We evaluate the overhead introduced by the bounded memory demand optimiza-
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tion for the FSM application, as it is the only multi-step kernel from the selected applica-

tions. Specifically, we consider the worst case scenario where the redundant computation

of previous steps and load balancing comes for free, i.e., memory is sufficient to accom-

modate all subgraph instances and moreover, we assume zero cost for load balancing at

the end of each step (e.g. re-shuffling data). Figure 5.25 shows the results for Patents-ML

and Youtube-ML. For most configurations, the overhead stays around 30-40%, which is

a fair price for the reliability of a bounded memory system. For other configurations,

such as Patents-ML with support threshold of 22k, we observe an overhead around 60%,

representing scenarios where the later steps starts to become cheaper than the cumulative

runtime cost of previous steps (shrinking lattice).

Figure 5.25: Worst case runtime overhead of keeping memory bounded with re-
computation if redundant computation and load balancing come for free.
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Overheads associated with work stealing. We use a low-overhead profiler AsyncPro-

filer6 to monitor Fractal executions and measure the time spent on work stealing related

code. Our experiments consider several algorithms and number of workers. We find that

the overhead of work stealing is about 1.05%, with standard error of 0.44%. In terms of

the initialization cost of the actor system, we observe this typically takes about one to two

seconds. Such overheads impact especially the performance of executions with reduced

amount of work. For instance, see Fig. 5.14 the 3-node motifs case.

6https://github.com/jvm-profiling-tools/async-profiler

https://github.com/jvm-profiling-tools/async-profiler
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Chapter 6

Consolidating graph pattern mining

paradigms and abstractions

Graph pattern mining paradigms are central for the design and implementation of GPM

systems. Moreover, because the search space of subgraphs is usually exponential, the

engineering of these systems should benefit even from the most modest performance gains:

especially on distributed systems where there is room for scaling processing for massively

parallel environments. In this context, GPM systems usually decide the paradigm that

provide the most scalable results [121] or the one that provide the most work efficient

solutions [60]. Despite the fact that many works have been considering pattern-awareness

as the state-of-the-art paradigm for general-purpose GPM systems [60, 21], in this chapter

we work towards a more conservative statement: no single paradigm is best for every

application scenario. The major challenge in showing these trade-offs is that most existing

GPM systems support only a particular paradigm for application design (POSE or PASE,

not both) and to complicate things even more, we observe a wide variety of targeted

computing architectures and parallelization approaches in these systems. These aspects

all together hide the real reason for reported improvements and negatively interfere with

the performance diagnosis. Therefore, we argue that any experimental work with the goal

of unveiling these paradigm trade-offs should do so starting from the same application

model and implementation: only this way we may be more certain that the performance

differences may be indeed explained by the alternative paradigms.

Our proposed model (Chapter 4) and its proof of concept implementation (Chap-

ter 5) help building complex general-purpose GPM pipelines in a concise and productive

way but also it meets the desired requirements for studying GPM paradigms from a ex-

perimental perspective, namely, being able to support multiple paradigms for building

algorithms in different scenarios. In this chapter we present an extensive experimental

evaluation of GPM paradigms on a wide range of application scenarios and along the way

we also propose new perspectives and renewed bearing for systems abstractions targeted

on GPM processing. As we may see, although many ideas presented here are not manda-

tory for correctness, they may guide practitioners towards more efficient and versatile

GPM systems.
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Before describing evaluated algorithms we make an effort to organize the con-

sidered application scenarios into categories. These categories are useful for two main

reasons: (i) they help identifying which kernels can accommodate which kind of alter-

native algorithm design; and (ii) they represent a first effort in the community towards

delimiting what constitutes a GPM problem. Figure 6.1 illustrates the categories and

kernels within them. Single-pattern algorithms represent GPM routines in which the sub-

graphs of interest share a same structural pattern (e.g., enumeration of k-cliques), whereas

multi-pattern algorithms represent GPM routines in which subgraphs of interest may span

multiple structural patterns. Among multi-pattern algorithms we also consider whether

the subgraphs of interest are selected based on a pattern-driven filter (e.g., finding sub-

graphs meeting a density threshold) or based on a label-driven filter (e.g., searching for

subgraphs containing a few labels of interest). In our experimentation study we do not

evaluate the motif kernel (k-MC ) w.r.t. GPM paradigms because this problem uncondi-

tionally generates all subgraphs of a given size (i.e. no pruning whatsoever), which limits

how subgraph enumeration can be improved, and also because this problem is extensively

studied in previous work [138, 107].

Figure 6.1: Taxonomy: categories represent problems with similar algorithm design re-
quirements.

Evaluated algorithms 

Single-pattern Multi-pattern

Pattern-driven filter Label-driven filter
cliques ( - )
pattern querying ( - )

frequent subgraph mining ( - - ) 
quasi-cliques ( - - )
query specialization ( - )

label search ( - - )
minimal keyword search ( - - )

Source: Made by the author.

Throughout these categories and for each problem we consider three algorithm

variants, two of which represent the paradigms evaluated in this study (POSE and PASE)

and the third representing alternatives used to capture how standard paradigms may be

extended or combined in new algorithms. Thus, the first two algorithm variants represent

the vanilla approach of directly applying a given paradigm to a GPM problem, while

the third represents new perspectives on how certain categories of problems may allow

alternative (and possibly improved) algorithms. PASE and POSE algorithms for each

kernel are described in Figure 4.6. The other algorithms are presented next, as each

category in Figure 6.1 allows a different set of alternative designs for algorithms.

In Section 6.1 we discuss opportunities to leverage optimized extension methods in

the proposed model, which can be applied to single-pattern algorithms. In Section 6.2, we
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propose a new GPM primitive to enhance our model and to allow multi-paradigm hybrid

algorithms, which can be applied in the context of multi-pattern algorithms with pattern-

driven filter. Finally, in Section 6.3 we illustrate how effective graph filtering procedures

may be included in our model, which can be applied to multi-pattern algorithms with

label-driven filter.

6.1 Enabling customized extension methods

As detailed in Chapter 4, the extension primitive is described by two parameters:

the extension type, and the extension method. In straightforward application modeling,

the extension method is set to be one of the default and generic all-extensions approach:

MC for edge-oriented and vertex-oriented extension types, or MP (Ä) for pattern-oriented

extension type. Single-pattern category admits a more optimized enumeration strategy

because with the information of which pattern to enumerate one can deploy specialized

algorithms [35, 25, 67]. In this case we can incorporate pruning strategies that normally

would be ensured via filtering primitives into the extension primitive method itself, which

reduces the number of primitives of a program and consequently, the number of calls to

filtering functions.

From the point of view of a subgraph being extended, two fundamental operations

describe the process of exploring new subgraphs: an operation that computes candidate

extension units (CE); and an operation that effectively adds extension units to the sub-

graph to obtain larger subgraphs (EX). Figure 6.2 illustrates these two operations over

the example of Figure 4.2 and considering vertex-oriented extension type. In particu-

lar, the operation that computes candidate extensions (CE) corresponds to the extension

method, defined as a parameter for the extension primitive.

Novel extension methods through custom implementations of the CE operation

enables new semantically equivalent applications that are capable of reaching subgraphs

of interest using a more fine-tuned approach. Indeed, such abstraction may be used for

prioritizing some extension units over others, for maintaining ad-hoc data structures for

quick subgraph neighborhood access, for maintaining a reduced local graph speeding up

extension units selection, among others. Another important aspect is that this customiza-

tion is made per extension primitive and thus, such modeling allows the combination of

multiple customized extension methods, each one related to an extension primitive in

the application string representation. Next we show how this may be accomplished for

single-pattern kernels such as clique finding and pattern querying.
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Figure 6.2: Extension primitive operations. The example assumes a vertex-oriented ex-
tension type.

Subgraph Extension
Units

Larger
subgraphs

Source: Made by the author.

Figure 6.3: Custom: algorithms with specialized extension methods.

(a) cliques (k-CL)

1: E← E(TV, MKCL) ▷ MKCL: Algorithm 11
2: output GE1 · · · EkA

(b) pattern querying (Ä-PQ)

1: E← E(TV, MMCVC) ▷ MMCVC: Algorithm 12
2: output GE1 · · · E|V(ρ)|A

Source: Made by the author.

Custom algorithm for cliques (k-CL) (Figure 6.3a). KClist [25] is an optimized

clique listing algorithm that reduces the clique search space by using special views of the

input graph on each enumeration depth. A state is maintained during KClist enumeration

which is a DAG (directed acyclic graph) extracted from the induced subgraph in the

neighborhood of each extension candidate. The idea of this algorithm is to maintain

a DAG composed of only valid clique extensions (which added to a clique becomes a

larger clique) and to refine this DAG as we include new extensions to the current clique.

Specifically, if we add extension unit e to a k-clique S, then we produce a new (k + 1)-

clique and most important, the new DAG only need to include extension units e′ that are

adjacent to e in the current DAG and moreover, the neighbors of e′ that must be in the

new DAG are only those that are also in the neighborhood of the added extension unit e.

If any of these two conditions do not hold, the extension unit cannot be part of a larger

clique. The intuition is that this strategy progressively reduces the input graph as larger

cliques are discovered and, consequently, it reduces the cost of generating new cliques by

disregarding vertices and edges that will never be part of a larger clique. Algorithm 11

details this method, denoted by MKCL. The extension method has two main subroutines:

(i) ensure that the neighbors of e are valid extensions in terms of cliques; and (ii) pre-
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compute the refined DAG G′ for subsequent calls for the larger clique. We highlight that

this method is more efficient than the all extension method for vertex-oriented extension

(MC) presented as default to the subgraph aggregation problem because in this case we

skip numerous spurious checks of whether a visited subgraph represents a clique. In some

ways, we enumerate cliques directly without filtering primitives.

Algorithm 11 KClist’s extension method MKCL(G,S): subgraph extension method that
generates only clique extension units from a DAG G and that generates a new DAG G′

for subsequent calls.
1: e← last(µ(S))
2: V ′ ← NG(e)
3: let G′(V ′, E ′) be a new DAG
4: for e′ in N(e) do
5: NG′(e′)← NG(e

′) ∩NG(e)

6: return V (G′) ▷ Extension units are obtained from the DAG vertices

Custom algorithm for pattern querying (Ä-PQ) (Figure 6.3b). The custom ex-

tension method may also be used to reduce the cost of pattern querying. Instead of

matching one vertex at a time via expensive recursive calls (MP (Ä) in Algorithm 4), the

Minimum Connected Vertex Cover strategy [67, 60] matches a connected subset of Ä (core)

such that no edge connects two vertices outside this core. Thus, once the core is matched

the remaining of the pattern can be safely obtained from the neighborhood of the core

itself, which tends to improve performance by avoiding the re-computation of extension

candidates in expensive recursive calls. Algorithm 12 shows how this strategy may be

modeled as a custom extension method MMCV C . This method receives the input graph

G, the current subgraph S, the target pattern Ä, and additionally, it maintains a map-

ping structure E that stores extension candidates for vertices not in the core. In order to

match the core the algorithm simply returns the standard all pattern extensions method

(MP (Ä)) described in Algorithm 4. Whenever the vertex cover size is reached (line 6)

the vertex candidate sets for the remaining vertices are computed and subsequent calls

to compute extensions for larger subgraphs are going to quickly access this pre-computed

structure (line 9). Finally, the method returns the subset of these candidates that satis-

fies the symmetry breaking conditions. Figure 6.3b shows how to incorporate this custom

extension method in an application design for pattern querying (Ä-PQ): instead of using

the standard MP (Ä) as method for the extension primitives we just plug this optimized

method MMCV C on each extension level instead.
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Algorithm 12 MCVC’s extension method MMCVC(G,S, Ä, E)

1: c← mcvc(Ä) ▷ Pre-processed
2: mcvcSize← |V (c)|
3: numVertices← |V (S)|
4: if |V (S)| < mcvcSize then
5: return all-pattern-extensions(G,S, Ä) ▷ fall back to MP(Ä): Algorithm 4
6: else if |V (S)| = mcvcSize then
7: for i← mcvcSize + 1 to |V (Ä)| do
8: E [i]← compute-vertex-candidates(S,G, Ä, i)

9: extensions← E [numVertices + 1]
10: sbConditions← get-or-compute-symmetry-breaking(Ä)
11: return {n | n ∈ extensions and satisfies(n, sbConditions)}

6.1.1 Incorporating extension abstractions in Fractal

Fractal implements the process of customizing primitive operations (Section 6.1) by

giving access to its subgraph enumeration engine through a data structure called subgraph

enumerator. This data allows the primitive operation to be transparent and extensible.

Subgraph enumerators represent a checkpoint for the subgraph enumeration process. Fig-

ure 6.4 shows the programming interface for the subgraph enumerator abstraction. During

subgraph exploration, extensions for the current subgraph ([SE-SG]) are computed using

the [SE-CE] function. Next computed extensions are consumed, one at a time, by the

[SE-EX] function. Such process is repeated for each extension primitive encountered in

the application and thus, an additional function for specifying an extension primitive with

a custom subgraph enumerator is provided by [FRAC-E-SE].

By default, it implements algorithms for vertex-induced (MC), edge-induced (MC),

or pattern-induced (MP ) extension methods that explore all valid subgraphs from the

input graph. By overriding these functions, a practitioner may implement a specific

subgraph exploration behavior for customized and optimized approaches of solving a GPM

problem.

Example 6.1.1. (KClist in Fractal) The user may implement a custom subgraph enu-

merator and pass it as an additional parameter to the customized expand operator

([FRAC-E-SE], Figure 6.4) to support complex GPM implementations. Listing 6.1 shows

the implementation of a KClist subgraph enumerator for Fractal applications. The im-

plementation follows the same steps discussed in Figure 6.3a. Listing 6.2 shows how to

incorporate this enumerator in a Fractal workload.
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Figure 6.4: Fractal: the subgraph enumerator API.

SubgraphEnumerator {

// [SE-SG]

def currentSubgraph: Subgraph

// [SE-CE]

def computeExtensions(): Unit

// [SE-EX]

def extend(): Boolean

}

Fractoid {

// [FRAC-E-SE]

def expand(n: Int, seClass: Class[_ <: SubgraphEnumerator]): Fractoid

}

Source: Made by the author.

Listing 6.1: KClist subgraph enumerator.
1 class KClistEnum extends SubgraphEnumerator {

2 val dag: Map[Int,IntList] // DAG adj. lists

3

4 override def computeExtensions(): Unit = {

5 val newDag = new Map[Int,IntArrayList]()

6

7 val u = currentSubgraph().getVertices().getLast()

8 val uneighborhood = dag.get(u)

9 for (v <- uneighborhood) {

10 val vneighborhood = dag.get(v)

11 val intersectionNeighborhood = uneighborhood.

12 intersection(vneighborhood)

13 newDag.put(v, intersectionNeighborhood)

14 }

15

16 val nextEnumerator = getNextSubgraphEnumerator()

17 nextEnumerator.setDag(newDag)

18 }

19 }

6.2 Enabling multi-paradigm algorithms via mapping

primitive

The existence of different GPM paradigms (Section 2.4) for solving the same prob-

lem raises important questions concerning how they compare to each other in different
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Listing 6.2: KClist cliques application.
1 val kclist = graph

2 .vfractoid() // vertex-oriented extension type TV

3 .expand(1, classOf[KClistEnum]) // extension method MKCL

4 .repeat(k) // repeat towards k-cliques

5 val numCliques = kclist

6 .aggregate(s => 0L, s => 1L, _ + _) // aggregation

7 .values.sum() // Spark API: sum all values

workload scenarios. We discussed trade-offs between paradigms enable a whole new op-

portunity for combining extension types within the same GPM application. By default,

existing implementations for graph pattern mining applications follow one of the GPM

paradigms: pattern-aware (PASE) or pattern-oblivious (POSE). If on one hand PASE

produces an exponential number of steps, its subgraph exploration allows more efficient

implementations because we may rely on fast set intersection routines to speedup the gen-

eration of extension candidates [60]. POSE is the opposite: we generate fewer application

steps but at the cost of a less effective subgraph enumeration. Thereby, we explore in

this work a hybrid design that could capture the best features of both: fewer steps plus

more effective subgraph enumeration. We explore this idea for multi-pattern algorithms

with pattern-driven filter as they admit reasoning about different ways one could reach

subgraphs of various patterns.

The main challenge concerning hybrid approaches is that canonical codes for sub-

graphs differ depending on the paradigm. In a PASE algorithm, canonical subgraph codes

are given by symmetry breaking conditions generated specifically for a pattern prior to

the subgraph enumeration process. In other hand, in POSE, the canonical subgraph codes

are not subject to a given pattern and thus, not related to symmetry breaking conditions

(see Section 4.1.2). In order to support switching among paradigms, and more specifically

among extension types, we propose extending our model with a new mapping primitive

abstraction.

Definition 20. (Mapping primitive) The mapping primitive is denoted by M(T ′, T ′′, f),

where T ′ is an input extension type, T ′′ is an output extension type, and f is a function

that maps a subgraph code of type T ′ into one or more subgraph codes of type T ′′. Specif-

ically, given a subgraph code µT ′(Si), the mapping primitive produces n subgraph codes

f(µT ′(Si)) = {µ
(i)
T ′′(Si) | 1 ≤ i ≤ n}, each serving as input for the subsequent primitives of

the application step.

A mapping primitive is an atomic GPM operation that allows mapping a subgraph

code into other subgraph codes (Definition 20), for instance from µTP (ρ) to µTE
, with the

purpose of ensuring correctness among switched GPM paradigms. Figure 6.5 illustrates

its general operation. Application steps can accommodate this additional primitive and
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the regex denoting them is updated to GE(E+ F+ M)∗A, where M represents the mapping

primitive.

Figure 6.5: Mapping primitive: mapping subgraph codes.

map
function (f)+ =

mapping: 
from pattern-oriented

to edge-oriented

Source: Made by the author.

To show the potential of such abstraction, in this work we provide an alternative

design for multi-pattern algorithms with pattern-driven filter. In this alternative de-

sign, referred as PASE+POSE, the algorithm ensures a pattern-aware paradigm (PASE)

in the first extension primitives and switches to a pattern-oblivious (POSE) on the fly,

which allows an unconditional exploration of larger subgraphs. This alternative algo-

rithm design is possible whenever the problem involves multiple patterns in the output

and the predicate for selecting valid subgraphs is a function of the subgraph structure

(its pattern). The main challenge concerning this hybrid approach is that canonical codes

for subgraphs differ depending on the GPM paradigm: symmetry breaking [46] is used

for pattern-aware paradigm while canonical filtering [121] is used for pattern-oblivious

pattern-oblivious. Thus, function f denotes a mapping process that transforms a sub-

graph represented through a pattern-aware code (obtained by MP(Ä) method) into the

same subgraph but represented through an equivalent pattern-oblivious representation

(obtained by MC method). In Figure 6.6 we show how to enumerate subgraphs with four

edges that contain a tailed triangle Ä by (i) matching a triangle subgraph isomorphic to

Ä and (ii) adding the fourth edge to the matched subgraph resulting in multiple tailed

triangles. In this case, up to three vertices, the subgraph is being enumerated using a

PASE paradigm with extension type TP (Ä) and, afterwards, the last edge is included using

a POSE paradigm with extension type TE. This is only correct because of the mapping

primitive that includes function f responsible for translating a TP (Ä) subgraph code into

a TE subgraph code, which introduces consistency between canonical subgraph codes.

For instance, Algorithm 13 pattern-oriented subgraph codes (PASE paradigm) can

be mapped to edge-oriented subgraph codes (POSE paradigm). An edge-oriented (TE)

subgraph code starts with the smallest edge of subgraph S (line 1) and this is sufficient to

determine the first extension unit in the converted code c. The next edges are determined

by the smallest edge not yet in the target code c that also maintains the code connected

(line 3).
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Figure 6.6: Hybrid PASE+POSE via mapping primitive (M).

...

pattern-oblivious
subgraph code

pattern-aware
subgraph code

Source: Made by the author.

Algorithm 13 mapper-PO-to-EO(µTP (ρ)(S)):

1: c← [({u, v}, {e})] | ∀e′ ∈ E(S), e ≤ e′

2: for i = 2 to |E(S)| do
3: e← (u, v) ∈ E(S) | (u ∈ V (c) ∨ v ∈ V (c)) ∧ ∀e′ ∈ (E(S)− E(c)), e ≤ e′

4: V ′ ← {u, v} − V (c)
5: c[i]← (V ′, {e})

6: µTE
(S)← c

7: return µTE
(S)

PASE+POSE algorithm for frequent subgraph mining (k-FSM -³) (Figure 6.7a).

The hybrid strategy depicted in Figure 6.6 can be applied to FSM for each frequent pat-

tern found in the previous iteration (lines 7-12) to determine which extended patterns are

also frequent, i.e., which patterns with an additional edge reaches the minimum support.

This is accomplished in line 12 where frequent patterns are matched via PASE paradigm,

mapped to a edge-oriented representation (mapping primitive M), and extended by one

edge. This approach generates one step per frequent pattern on each iteration, instead of

one step per extended pattern candidate as observed of vanilla PASE. Thus, this may be

used to tame the exponential growth of submitted steps of pattern-aware paradigm.

PASE+POSE algorithm for quasi cliques (k-QC -³) (Figure 6.7b). We leverage

this hybrid strategy for reducing the number of steps in PASE design. First, we generate

patterns with k − 1 vertices that may be extended to become a k-vertex quasi clique

(line 3). Next the algorithm matches each of these pattern candidates, adds one additional

vertex to subgraphs found, and selects the ones meeting the minimum density requirement

(line 9).
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Figure 6.7: PASE+POSE: hybrid multi-paradigm algorithms.

(a) frequent subgraph mining
(k-FSM -³)

1: E← E(TE, MC)
2: P′ ← EA

3: Pf ← freq-patt-supp(P′)
4: output Pf
5: for i← 2 to k do
6: P′ ← ∅
7: for Ä in Pf do
8: n← |V (Ä)|
9: E′ ← E(TP(Ä), MP(Ä))

10: E′′ ← E(TE, MC)
11: M← M(TP(Ä), TE, f)
12: P′ ← P′ ∪ GE′

1
· · · E′

n
ME′′A

13: Pf ← freq-patt-supp(P′)
14: if Pf = ∅ then
15: break
16: output Pf

(b) quasi cliques (k-QC -³)

1: P← vpatterns-ind(k − 1)
2: qc← canBeQuasiClique(k, ³)
3: P′ ← {Ä ∈ P | qc(Ä)}
4: for Ä in P′ do
5: E′ ← E(TP(Ä), MP(Ä))
6: E′′ ← E(TV, MC)
7: M← M(TP(Ä), TV, f)
8: F← F(isQuasiClique(³))
9: output GE′

1
· · · E′

k−1
ME′′FA

(c) query specialization (Ä-QS )

1: E′ ← E(TP(Ä), MP(Ä))
2: E′′ ← E(TE, M

′
C
) // unique edges

3: M← M(TP(Ä), TE, f)
4: output GE′

1
· · · E′|V(ρ)|ME

′′A

Source: Made by the author.

PASE+POSE algorithm for query specialization (Ä-QS) (Figure 6.7c). The

algorithm matches the query pattern Ä using pattern-aware (E′), switches to pattern-

oblivious (primitive M), and finishes enumeration by adding an additional edge to the

subgraph (E′′) – producing subgraphs containing pattern Ä (line 5). Notice that this hybrid

design is very fit to query specialization since the kernel requires the specializations to

contain the input pattern Ä as subpattern.

6.2.1 Incorporating mapping primitive in Fractal

Figure 6.8 shows the programming interface for the subgraph mapping abstraction

in Fractal. Additional functions FRAC-V, FRAC-E, and FRAC-P for the fractoid interface

allow mapping the current subgraph processing to vertex-, edge-, or pattern-oriented ex-

tension types. The input for these operators is a subgraph mapper that returns nothing.

Several mapped subgraph codes may be processed by a newSubgraph call. Such applica-

tion design is intended to encourage in-place subgraph processing instead of materializing

each map result into a new subgraph object. This implementation design is known to im-

prove the memory management efficiency in garbage collected languages (such as Scala/-

Java) [84], especially in our context of a potentially exponential subgraph search-space to
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be explored. Next we explore an example of how this may be accomplished in Fractal.

Figure 6.8: Fractal: the subgraph mapping API.

SubgraphMapper {

abstract def map(s: Subgraph): Unit // to be implemented

def newSubgraph(s: Subgraph): Unit // final

}

Fractoid {

// [FRAC-V]

def vfractoid(m: SubgraphMapper): Fractoid

// [FRAC-E]

def efractoid(m: SubgraphMapper): Fractoid

// [FRAC-P]

def pfractoid(p: Pattern, m: SubgraphMapper): Fractoid

}

Source: Made by the author.

Example 6.2.1. (Hybrid k-FSM -³ subroutine) Listing 6.3 overviews the implementation

of the hybrid exploration strategy introduced ina Figure 6.6 and applied for FSM. The

subgraph mapper implemented for this particular example produces a single mapped

subgraph code according to Algorithm 13, which is marked by a single newSubgraph

call. A one-to-many mapping could be accomplished by several calls of newSubgraph

with modified version of the given subgraph, i.e., several subgraph codes derived from the

same input subgraph.

6.3 Enabling effective pruning via graph filtering

Subgraph pruning is important for reducing the exponential growth of the explo-

ration process and in certain scenarios, filtering functions may be applied directly to the

input graph. Specifically, some filtering primitives applied in the context of subgraphs for

GPM applications can be pushed down directly to the data source, i.e., the input graph.

Exploratory routines over graph data often exhibit locality during processing: the work-

ing set of visited vertices and edges is reduced or it shrinks as the algorithm progresses.

Also, because the cost of graph processing engines is directly related to the input size,

being able to work with just the essential regions of the graph can significantly reduce the
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Listing 6.3: Hybrid k-FSM -³subroutine: enumerating subgraph candidates from a known
frequent pattern.
1 val mapperPoToEo = new SubgraphMapper {

2 override def map(s: Subgraph): Unit = {

3 val mappedSubgraph = // ... mapped subgraph according to Algorithm 13

4 newSubgraph(mappedSubgraph)

5 }

6 }

7

8 val frequentPattern = // ... known frequent pattern ρ

9

10 val ls = graph

11 .pfractoid(frequentPattern) // pattern-oriented extension type TP (ρ)
12 .expand(pattern.numVertices()) // extension method MP (ρ)
13 .efractoid(mapperPoToEo) // edge-oriented extension type (TE)

14 .expand(1) // extension method MC

15

16 // .. do whatever aggregation is intended for ’ls’

overall cost of such computations. During the enumeration process, extension candidates

are generated from the edges connecting the current subgraph with extension units not

in the current subgraph. Moreover, this is a repeating process for each subgraph being

extended, which usually means an exponential search-space. Thus, reducing the input

graph may be beneficial for filtering conditions that can be applied directly to the input

graph once, instead of being applied for each subgraph found.

The graph filtering (GF) enables such optimizations by skipping edges and vertices

that are not of interest before the enumeration process starts. This local filtering on

graph has the potential of a great reduction in the number of invalid subgraph extensions,

improving the overall performance. While this can be implemented as a preprocessing in

the input graph, doing so becomes infeasible if one considers arbitrary filtering predicates

that may unfold from graph pattern mining tasks – store and manage that many views of

the input graph is not trivial, considering the scale of the input and the general-purpose

requirement of the system. Figure 6.9 shows the operation of graph filtering. Given an

input graph G, a user-defined vertex predicate Cv, and a user-defined edge predicate Ce,

the step processing originally over graph G is performed over a reduced view of G, G′,

composed only by vertices and edges satisfying predicates Cv and Ce, respectively.

We consider applying graph filtering (GF) in the context of multi-pattern algo-

rithms with label-driven filter. In this case, subgraph predicates based on some label

property may induce in local conditions that each vertex or edge should meet. Thus, if

the predicate is known to be anti-monotonic we conclude that is safe to remove them

from the input graph before subgraph enumeration begins. Next we show how to incor-

porate such optimization into pattern-oblivious algorithms. We refer to these optimized
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Figure 6.9: Abstraction: graph filtering.

read step processing
over 

Storage Main memory

Source: Made by the author.

pattern-oblivious algorithms as POSE+GF.

Figure 6.10: POSE+GF: effective pruning via graph filtering (GF).

(a) label search (k-LS -L)

1: E← E(TV, MC)
2: F← F(labelsSubsetOf(L))
3: G′ ← labelsSubsetOf(L)(G)
4: output G′E1F1 · · · EkFkA

(b) minimal keyword search
(k-MKS -K)

1: E← E(TV, MC)
2: F′ ← F(coveredOnceOrNone(K))
3: F′′ ← F(isMinimal)
4: G′ ← coveredOnceOrNone(K)(G)
5: output G′E1F

′
1
· · · EkF

′
k
F′′A

Source: Made by the author.

POSE+GF algorithm for label search (k-LS-L) (Figure 6.10a) The predicate

labelsSubsetOf, the same initially defined with the purpose of being the argument for

filtering primitives on subgraphs, is applied directly to the input graph (line 3). Figure 6.11

shows an example of graph filtering with a predicate that selects only vertices having blue

or green labels. Such filtering can be used for solving specific instances of the subgraph

search application. In this case, instead of applying exhaustive filters on each subgraph

enumerated, a reduced graph G′ (instead of G) is passed to downstream step processing

concerning the enumeration and aggregation of subgraph. The outcome is a reduction in

the number of invalid extensions generated while expanding subgraph candidates.

POSE+GF algorithm for minimal keyword search (k-MKS-K) (Figure 6.10b)

Minimal keyword search admits a similar operation but with predicate coveredOnceOrNone.

Because this predicate is applied after each extension primitive originally, we may assume

that this is in fact an anti-monotonic filter applied to subgraphs in this kernel. Notice

that the application step is now applied over a filtered version of the input graph (G′) in

line 5.
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Figure 6.11: Graph filtering example: selecting vertices having specific labels.

Source: Made by the author.

6.3.1 Incorporating filtering abstractions in Fractal

Figure 6.12 shows the programming interface for the graph filtering abstraction

in Fractal. Edge filtering can be applied over input graphs (FractalGraph) and its only

parameter is a function representing an edge predicate for removing unwanted edges while

reading the input graph. The description of an edge has five elements: (1) the source

vertex identifier u; (2) the labels of vertex u; (3) the destination vertex identifier v; (4)

the labels of vertex v; and (5) the labels of edge (u, v). Thus, filtering criteria may include

any local reasoning over an edge and its properties. Vertex filtering is similar and selects

vertices satisfying a given predicate considering the vertex and its labels.

Example 6.3.1. (k-LS -L with graph filtering on Fractal) The user may apply the fil-

tering condition operator directly on the input graph to keep only vertices that have the

target labels of the query ([FG-VF], Figure 6.12). Listing 6.4 shows the implementation

of label-based subgraph search with graph filtering in Fractal.
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Figure 6.12: Fractal: the graph filtering API.

FractalGraph {

// [FG-EP]

typedef EdgePredicate: (

Int, // vertex u

IntArrayList, // labels of u

Int, // vertex v

IntArrayList, // labels of v

IntArrayList // labels of (u,v)

) => Boolean

// [FG-VP]

typedef VertexPredicate: (

Int, // vertex u

IntArrayList, // labels of u

) => Boolean

// [FG-EF]

def efilter(pred: EdgePredicate): FractalGraph

// [FG-VF]

def vfilter(pred: VertexPredicate): FractalGraph

}

Source: Made by the author.

Listing 6.4: k-LS -Lwith graph filtering application.
1 val labelSet = // ... input label set for querying

2 val filteredGraph = graph

3 .vfilter((u, uLabels) => labelSet.containsAll(uLabels))

4 val ls = filteredGraph

5 .vfractoid() // vertex-oriented extension type TV

6 .expand(1) // extension method MC

7 .repeat(k) // repeat towards k-vertex induced subgraphs

8 val numSubgraphs = ls

9 .aggregate(s => 0L, s => 1L, _ + _) // aggregation

10 .values.sum() // Spark API: sum all values

6.4 Evaluating GPM paradigms: consolidation and

renewed bearing

The alternative paradigms for GPM (PASE and POSE) exhibit very particular

characteristics concerning how they approach subgraph enumeration. In fact, their be-
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havior in terms of the number of steps necessary to a GPM task or in terms of the

effectiveness of subgraph extension poses important questions regarding these trade-offs

and how they manifest in real-world application scenarios. Because we consider that there

is this gap between algorithmic strategies and a proper landscape of their limitations, we

conclude this text with a wide evaluation of GPM paradigms and application scenarios.

We expect to go beyond reporting performance results but also be able to consolidate

the existing knowledge about GPM paradigms and to highlight promising directions for

future work.

As with any experimental work, we must be careful with how we approach the im-

plementation and the deployment of such algorithms. A naïve methodology would be to

leverage some existing PASE frameworks [60, 17, 87] and other POSE frameworks [121, 12]

and compare their performance directly. In this case, however, we would be comparing

system implementations and not particularly paradigms. For instance, performance differ-

ences reported in the literature may be explained by multiple factors not related to GPM

paradigms whatsoever: parallelization strategies, underlying computing architecture, fine

tuned implementations, programming languages and virtual machines, and so on. We

argue that a proper evaluation of GPM paradigms should be provided over the same

general-purpose system model and implementation. Fortunately, our primitive-based mo-

del for GPM (Chapter 4) implemented over Fractal system (Chapter 5) admits multiple

paradigms and application scenarios via a general-purpose programming interface. We

believe that such deep experimental evaluation is a proper closure for this work because

it exercises our proposed model and tools but also provides additional knowledge and

important insights for the GPM community.

In this chapter we compare implementations of GPM algorithms in our model and

within the same system (Fractal). Because we provide results obtained from the same sys-

tem and architecture, we are able to draw more expressive conclusions regarding which

paradigms are more effective instead of which implementation are more effective. We

highlight that a detailed comparison of our model against competing systems is presented

earlier in Section 5.4.1. Besides PASE and POSE (Figure 4.6), we also consider evalu-

ating the alternative algorithm designs Custom (Figure 6.3), PASE+POSE (Figure 6.7),

and POSE+GF (Figure 6.10). With those we expect to provide more concrete direc-

tions on how default algorithms may be modified towards alternative and more powerful

approaches. Kernels considered, algorithms and categories are summarized in Table 6.1.

Hardware. All experiments were run on a cluster with 5 machines, each one having

two CPU Intel Xeon E5-2695v2 Ivy Bridge 2,4GHZ (12 cores each, 24 per machine),

64GB RAM, running RedHat Linux 7.6. The machines are connected by Infiniband FDR

(56Gb/s).
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Table 6.1: Summary of algorithms evaluated. Categories represent problems with simi-
lar requirements concerning algorithm design. Algorithms represent standard paradigms
(POSE and PASE in Figure 4.6) and derived strategies for solution (Custom in Figure 6.3,
PASE+POSE in Figure 6.7 , and POSE+GF in Figure 6.10).

Problems Categories Algorithms

cliques (k-CL)
pattern querying (Ä-PQ)

Single pattern
POSE
PASE
Custom

frequent subgraph mining (k-FSM -³)
quasi cliques (k-QC -³)
query specialization (Ä-QS )

Multi-pattern

Pattern-driven
filter

POSE
PASE
PASE+POSE

label search (k-LS -L)
keyword search (k-MKS -K)

Label-driven
filter

POSE
PASE
POSE+GF

Datasets (Table 6.2). The datasets used in our evaluation have been widely used pre-

viously to evaluate graph mining algorithms and systems [34, 1, 121, 60, 17, 87]. Mico [34]

is a co-authorship network, Patents [48] models the citations of patents published in the

US, LiveJournal and Orkut [134] model friendship in social networks, and Youtube [23]

models posted videos and how they are related. In our experiments all graphs are loaded

into the memory of workers using a compressed sparse row graph representation (CSR).

Table 6.2: Real-world datasets used in the experiments.

|V (G)| |E(G)| max.deg. avg.deg. labels

Mico (MI) [34] 100K 1M 1.3K 22.3 29

Patents (PA) [48] 2.7M 13.9M 789 10.1 37

LiveJournal (LJ) [134] 3.9M 34.6M 14.8K 17.3 -

Youtube (YO) [23] 4.5M 43.9M 2.5K 19.1 108

Orkut (OR) [134] 3.07M 117.1M 33.3K 76.2 -

Performance evaluation measures. We consider a time budget of 5 hours for each

execution, which allows us to study larger and more diverse GPM paradigms. Within each

execution, to be fair in our comparison, we divide the time budget amongst application

steps in a way that lighter steps (concerning more dense and infrequent patterns in scale-

free networks) are scheduled first so more time budget is left for heavier steps. We consider

two evaluation metrics: (1) the runtime representing elapsed time of executions whenever

it is not trivial to measure the application throughput (particularly, for FSM); and (2)

the normalized throughput of aggregated subgraphs – in this case, we indicate whether an

execution reached the time limit with an asterisk (∗). Throughput allows us to determine
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the most efficient strategy given a time budget. These metrics are widely used to evaluate

the performance of subgraph querying systems under time constraints [49] and also in the

context of streaming analytics where aggregated results are continuously consumed via a

publish-subscribe framework [12].

Pattern and label query generation (Figure 6.13). For GPM problems such as

query specialization (Ä-QS ) and pattern querying (Ä-PQ), we generate input patterns for

each dataset based on their density. Specifically, we implement a widely known unbiased

sampling method for subgraphs [130] to extract representative patterns of a given size k:

(1) Sk, sparse pattern with k vertices; and (2) Dk, dense pattern with k vertices. For

problems such as label search and minimal keyword search, we take a similar approach to

produce label sets occurring together in a given dataset: (1) Ik, representing k infrequent

labels that rarely occur together within a subgraph; (2) Fk, representing k labels that

most frequently appearing together within a subgraph.

Matching order for pattern-aware (PASE). Additionally, we adopt the following

heuristic for determining the order in which patterns are matched when using the pattern-

aware paradigm. First, we match vertices having infrequent labels first, if there is a tie

match vertices with more symmetry breaking conditions [46]. Finally, if there is still a tie,

we match vertices with more backward edges in the pattern so that denser subpatterns are

matched first. In our experiments this heuristic is sufficient to ensure that no arbitrarily

low quality matching order penalizes the pattern-aware approach. An in-depth study on

various subgraph matching approaches including orders can be found at Sun et al. [119]

and is out of the scope of this work.

6.4.1 Single-pattern algorithms

Cliques (k-CL, Figure 6.14). Overall, the algorithm representing the PASE strategy

exhibits superior performance compared to its POSE counterpart. This is because both

strategies require a single application step with PASE having the advantage of avoiding

the expensive filtering calls of POSE that are applied to an increasing number of invalid

subgraphs. Finally, since the number of clique candidates may be progressively pruned

as the recursive subgraph enumeration advances, the Custom algorithm (see Figure 6.3a)

is able to outperform the standard approaches in almost all configurations, whenever the

amount of work is sufficient to, justify maintaining local views of the input graph on each

execution thread - as required by the parallel version of KClist [25].
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Figure 6.13: Pattern and label queries used to evaluate algorithms.
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Pattern querying (Ä-PQ , Figure 6.15). Overall the POSE strategy is inferior for

all configurations considered, with many executions that do not even found one single

output subgraph within the timeout. This confirms the natural hypothesis that pattern-

aware computation is best whenever the target patterns are known and generated apriori.

Regarding the two remaining alternatives - PASE and Custom - that leverage pattern

information during subgraph enumeration, we observe that the latter outperforms the

former in almost all configurations. The exceptions to this rule happens in D8 for Live-

Journal, and in D6 for Orkut. A careful examination of these results offers the nuanced

but interesting finding that the frequency and density of the target pattern alone is insuffi-
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Figure 6.14: Throughput: Cliques (k-CL).
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Source: Made by the author.

cient to explain the best alternative. Essentially one must also consider the the minimum

vertex cover for the input pattern (i.e. the optimized algorithm considered for pattern

querying). In fact, both of these exceptions represent large patterns that are cliques and

in this case, the minimum vertex cover is always all vertices but one. This makes the cus-

tom strategy least effective because matching the cover is almost the same as matching

the entire pattern.

Figure 6.15: Throughput: Pattern querying (Ä-PQ).

S4 S5 S6 S7 S8
Query (ρ)

0.0

0.5

1.0

N
or
m
al
iz
ed

th
ro
ug
hp
ut

0.
02

0.
0
*

0.
0
*

0.
0
*

0.
0
*

0.
1

0.
4

0.
2
*

0.
1
*

0.
7
*

1.
0

1.
0

1.
0
*

1.
0
*

1.
0
*

POSE PASE Custom

D4 D5 D6 D7 D8

Query (ρ)

0.0

0.5

1.0

N
or
m
al
iz
ed

th
ro
ug
hp
ut

0.
0
*

0.
0
*

0.
0
*

0.
0
*

0.
0
*

0.
7

0.
3

0.
2
*

0.
2
*

1.
0
*

1.
0

1.
0

1.
0
*

1.
0
*

0.
2
*

POSE PASE Custom

(a) LJ with sparse queries (b) LJ with dense queries

S4 S5 S6 S7 S8
Query (ρ)

0.0

0.5

1.0

N
or
m
al
iz
ed

th
ro
ug
hp
ut

0.
00
3
*

0.
0
*

0.
0
*

0.
0
*

0.
0
*

0.
1
*

0.
6
*

0.
2
* 0.
4
* 0.
6
*

1.
0

1.
0
*

1.
0
*

1.
0
*

1.
0
*

POSE PASE Custom

D4 D5 D6 D7 D8

Query (ρ)

0.0

0.5

1.0

N
or
m
al
iz
ed

th
ro
ug
hp
ut

0.
0
*

0.
0
*

0.
0
*

0.
0
*

0.
0
*

0.
6

0.
3

1.
0

0.
4
*

0.
2
*

1.
0

1.
0

0.
1

1.
0

1.
0
*

POSE PASE Custom

(c) OR with sparse queries (d) OR with dense queries
Source: Made by the author.



6.4. Evaluating GPM paradigms: consolidation and renewed bearing 128

Discussion. In general, PASE outperforms POSE in this single-pattern setting thanks

to its pre-computed execution plan that avoid spurious subgraph visits. Specifically,

PASE’s overhead of generating and matching each pattern individually pays off since

these problems concern only one pattern. On the other hand, Custom algorithms tend

to be more work-efficient than competitors in most cases but in some nuanced cases

can be inefficient. This means that as we aim towards more specialized algorithms for

a given application scenario, especially for GPM, it may be a good practice to fully

understand their limitations first. For instance, we observed that for some configurations

(especially the ones concerning more dense query patterns) the Custom strategy provided

by MCVC [67, 60] is not as efficient as PASE, mostly because in these cases the minimum

connected vertex cover tends to be of almost the same size as the query pattern.

Thereby, we see an opportunity for the development of adaptable search strategies

within GPM systems capable of understanding and learning the most appropriate sub-

graph exploration paradigm conditioned on pattern input and other related contextual

features of the graph. In particular, some application scenarios could really benefit from

switching between available exploration strategies at runtime to cope with unpredictable

input workloads. For instance, an automated GPM system should be able to determine

that POSE paradigm is not adequate for single-pattern problems and moreover, that de-

pending on the characteristics of the query data for pattern querying PASE may be a

more accurate design choice compared to MCVC.

6.4.2 Multi-pattern algorithms with pattern-driven filter

Frequent subgraph mining (k-FSM -³, Figure 6.16). As the output of FSM is the

set of frequent patterns and supports, no trivial measure of execution progress exist and

we report the runtime of configurations in which at least one of the alternative algorithms

finished within the time limit. Overall, POSE is more effective in the majority of config-

urations, especially for Mico and Patents datasets. An exception occurs in k-FSM -200K

on Youtube in which PASE exhibits better performance (Figure 6.16f). The reason for

that is directly related to the number of steps required by the PASE strategy, on those

scenarios. For instance, while 3-FSM -20K and 4-FSM -20K on Patents (Figure 6.16d)

require 1529 and 4463 steps, respectively, 3-FSM -200K and 4-FSM -200K on Youtube

require much less: 34 and 115 respectively. Not unexpectedly, PASE+POSE represents

a middle ground in terms of the number of steps required and its performance lies be-

tween the two baseline strategies. Additionally, the worst case scenario in terms of how

many steps a particular algorithm requires can be determined at runtime for PASE and
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PASE+POSE from the set of already known frequent patterns and possible extensions to

them.

Figure 6.16: Runtime: Frequent subgraph mining (k-FSM -³).
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Quasi cliques (k-QC -³, Figure 6.17). For the configurations considered, we see

a vast superiority of the PASE strategy. Compared to POSE and PASE+POSE, the

PASE approach is more efficient in these settings since most queried patterns exist in

the input graph, which makes the overhead of PASE to payoff. However, as the size of

subgraphs increases and the number of pattern candidates in PASE increases exponentially

(increasing overhead) and one starts evaluating patterns that are not found in the input

graph. For instance, in Orkut, PASE submits 5 application steps with no output for

7-QC -0.5 and 41 for 8-QC -0.5, indicating that this quantity tends to become greater and

incurs in higher overhead for pattern-aware paradigm, even for unlabeled applications

such as quasi clique finding on such problems.
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Figure 6.17: Throughput: Quasi cliques (k-QC -³).
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Query specialization (Ä-QS , Figure 6.18). The POSE strategy - which relies on

expensive visit/filter operations in order to ensure that the input pattern is contained

in the enumerated subgraph - performs poorly on this task. The PASE approach is

superior in almost all the scenarios, especially in Mico, which is a very dense dataset

with overrepresented labels and patterns. Drilling into the comparative analysis of PASE

vs. PASE+POSE (hybrid variant), let us consider the Youtube results for D7-QS and

D8-QS , respectively. In the former, the hybrid variant is more efficient and we observe

that 261 of 648 (≈ 40%) steps in PASE finishes with zero output. In the latter, PASE is

slightly more efficient and 119 of 542 (≈ 22%) steps in PASE finishes with zero output.

A similar behavior can be observed for the other scenarios, which leads us to conclude

that there is a correlation between spurious steps (the ones that return zero output) and

PASE performance. The hybrid approach, on the other hand, is not prone to this because

it matches pattern Ä first (i.e. the subpattern), and then extends it with one additional

edge, which prevents the runtime from spurious querying steps. This behavior depends

on the occurrence of each pattern in the underlying network, which explains why Mico

(dense and with most patterns occurring in the dataset) exhibit the best results for PASE.

Discussion. POSE is not an adequate exploration strategy when the pruning conditions

are subject to subgraph’s pattern structure and particularly if they are known apriori, such
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Figure 6.18: Throughput: Query specialization (Ä-QS ).
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as quasi cliques and query specialization. However, for larger subgraph sizes and especially

in a labeled context, PASE may incur in substantial spurious work by matching patterns

that do not occur in the graph and hybrid approaches can be an interesting alternative

to redress this issue. We observe that this PASE overhead does not affect so much the

performance of quasi cliques, for example. This is actually because, by definition, the

predicate condition that selects quasi cliques is able to provide a large reduction in the

number of patterns that must be matched on each application step, mitigating PASE’s

overhead. There are also some applications in which POSE can be more efficient, such as

FSM. Although a multi-pattern algorithm with pattern-driven filter, this kernel exhibit

one defining difference: its filtering condition based on pattern structure (pattern-driven)

must be determined at runtime, as FSM requires the computation of supports to back

up threshold pruning. Thus, an FSM algorithm is unable to determine a priori which

patterns are certain to be frequent and should be extended/matched, resulting in many

spurious application steps for PASE.

Hence, we see significant potential in hybrid subgraph exploration paradigms (such

as PASE+POSE) towards mitigating PASE overheads of spurious querying of patterns,

especially for larger spaces where the number of patterns becomes exponentially larger. It

remains a challenge to determine prior to execution which alternative may be the best on

each case. Determining whether the overhead of multiple application steps pays off may

be even more challenging considering that in real-world sparse graphs, the distribution
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of subgraphs per patterns is very skewed (characteristic that we demonstrate empirically

in the next Section), which implies in even more skewed application steps for PASE. We

anticipate that GPM systems would benefit from pragmatic (contextual) knowledge of

the input data in order to automatically determine the most appropriate paradigm (or

combination of them) for a particular task and moreover, to better schedule an increasingly

skewed set of application steps towards mitigating submission overheads. Additionally,

such adaptive choice of algorithm may also be applied at runtime, as long as these this

contextual knowledge and estimates are captured from each application step.

6.4.3 Multi-pattern algorithms with label-driven filter

Label search (k-LS-L, Figure 6.19). For Mico, the PASE strategy exhibits larger

overhead for small subgraph sizes since it is modeled as a multi-step application, espe-

cially when the amount of work is not substantial (e.g. 4-LS -I8). For larger values of

k this overhead starts to payoff and the performance becomes roughly equivalent to the

POSE approach. PASE also tends to become more inefficient for larger subgraph sizes

(e.g. [4-8]-LS -F8 in Youtube). Such behavior is explained by the skewness of patterns

w.r.t. their frequency – in particular, the algorithm spends much of the assigned time

enumerating subgraphs of an individual pattern that represents a very small portion of

the total output, affecting the rate at which output is generated. To support this claim we

show in Figure 6.20 the number of subgraphs (output) per pattern found in PASE: greater

skew indicates that many small application steps sum up increasingly larger submission

overhead and consequently, more substantial drops in performance for larger subgraph

sizes. The POSE+GF algorithm is most effective for frequent labels (F8), since a larger

valid subgraph space (output) tends to exacerbate the overhead and redundancy of filter-

ing routines, applied on every enumeration level. More stable results can be observed for

Youtube (lower skew in labels compared to Mico). In this case the gap between POSE and

PASE in this scenario is small. Finally, the hybrid (POSE+GF) approach exhibit sub-

stantial improvement over the alternatives. For example, on Youtube - a larger dataset -

graph reduction produces a very interesting effect of reducing the working set at runtime,

improving memory efficiency and caching.

Minimal keyword search (k-MKS-K, Figure 6.21). We do not see a clear winning

strategy for this task - in keyword search, arbitrary labels are allowed to appear between

query labels, making it non-trivial to determine which patterns map to valid subgraphs in

the input graph (explains the lack of trend in the results, for example, for 7, 8-MKS -F4 on
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Figure 6.19: Throughput: Label search (k-LS -L).
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Mico, Figure 6.21(b)). Overall POSE+GF is prone to produce better results, confirming

the results concerning label search (Figure 6.19). Indeed, graph filtering (GF) improves

POSE to be more efficient than PASE in some cases where this was not true initially

(e.g. 5-MKS -I4 on Figure 6.21a). For larger subgraph sizes (k = 8), PASE can be less

efficient due to the number of application steps that must be submitted in the algorithm –

spurious querying in PASE may even make generated results to drop to zero (e.g. k = 8 on

Figures 6.21c and 6.21d). For small subgraph sizes, PASE vs. POSE performance really

depends on the query and input graph. A careful examination of these executions (not

shown) indicates that good scenarios for PASE are those in which each submitted step

has significant contributions in terms of the output. The POSE approach is not limited

in enumerating patterns one at a time and combined with the fact that it is more coarse-

grained in terms of submitted application steps results in a more efficient subgraph finding

approach for such tasks. This behavior of PASE vs. POSE may indicate that for some

applications there may be hidden relationships between label-based filtering conditions

and pattern-based filtering conditions; and because vanilla PASE is not able to exploit

those, it suffers from unpredictable performance issues in such settings.
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Figure 6.20: Number of Subgraphs per Pattern concerning label search results (Fig. 6.19):
pattern-aware (PASE) is penalized by skewness of application steps. On Mico dataset (MI)
this skewness is more expressive, resulting in larger drops of performance as subgraph size
k increases. A similar behavior can be observed on Youtube dataset (YO) but at a lower
scale.
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Discussion. In general, POSE and PASE remain competitive with one another in such

tasks: PASE is not particularly suited for label-driven filtering however if the number of

patterns queried is small, its improved subgraph enumeration method (MP(Ä)) can be more

efficient by avoiding expensive calls to filtering primitives. The operation of PASE may

generate an exponentially increasing number of steps of very skewed sizes in scale-free

graphs (illustrated in Figure 6.20), which may impose constraints and complexities with

respect to distributed scaling and performance – label-driven filters only exacerbate this

disadvantage and adopting a pattern-aware paradigm may be challenging in such settings.

On a different matter, for local filters such as label-driven, the graph optimization that

pushes down filtering conditions to the input graph can provide substantial performance

improvement as a reduced working set may imply in better memory efficiency (caching).

Although we applied this optimization for POSE only, this could easily help to improve

the performance of PASE algorithms or any other algorithm relying on anti-monotonic
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Figure 6.21: Throughput: Minimal keyword search (k-MKS -K). “not applicable” indi-
cates that none of the algorithms produced output for that particular problem instance.
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filters on subgraphs.

We see room for several novel strategies. First scaling PASE for larger subgraph

sizes. Second, taming the exponentially growth of patterns through improved scheduling

and/or hybrid approaches combining PASE and POSE to reduce the number of submitted

tasks and their skewness. Third, we believe that understanding the relationships between

label-driven filters and underlying subgraph patterns may be used to develop hybrid

strategies to improve pruning efficiency and cost within such GPM systems. For instance,

we observed many configurations where some labels of interest do not occur in many

specific pattern structures. In this case, PASE could be substantially improved if with that

information we determine a priori which patterns should not be matched via an application

step simply because no output is going to be generated from this. The other way around,

POSE could also benefit from it by early pruning subgraphs of (sub)patterns that are

certain to not contain a specific set of labels.
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Chapter 7

Final Remarks

This work is built upon an increasing interest in Graph Pattern Mining (GPM) algorithms

that have important applications in data analytics on graphs. We identify an absence of

proper formal model for describing general-purpose graph pattern mining algorithms. In

particular, we observe that existing approaches are too limited in representing multiple

graph pattern mining paradigms (pattern-aware and pattern-oblivious), or they fail in

modularity and conciseness for application design. In this work we propose a primitive-

based model that can be used to express GPM algorithms using different paradigms

(Chapter 4), a proof of concept distributed implementation of that model (Chapter 5),

and an extensive experimental analysis of GPM paradigms in the context of general-

purpose GPM systems.

From a systems perspective, we implement the primitive-based model in an open-

source system called Fractal that enables improved productivity in designing and inte-

grating complex GPM algorithms. We demonstrate empirically the effectiveness of our

model implementation in proving competitive performance against existing approaches

without sacrificing the expressiveness of algorithms or the composability of operators.

Finally, we leverage our system implementation of the primitive-based model to

close some gaps concerning the trade-offs among GPM paradigms. In this context,

we present an experimental study that considers a wide range of application scenarios

and compares multiple algorithmic solutions: ranging from standard pattern-aware and

pattern-oblivious algorithms to promising optimizations and hybrid alternatives. We be-

lieve that because we study these algorithms under the same execution settings and under-

lying application model, our findings are more reliable and useful for the GPM community.

Our experiments reveal that there is no silver bullet when it comes to choosing subgraph

enumeration paradigms, be pattern-aware or pattern-oblivious. In particular, we confirm

that pattern-oblivious is inferior whenever the search space is pruned based on pattern

structure, but, on the other hand, pattern-aware suffers from an exponentially increasing

overhead of querying individual patterns one at a time, especially in distributed large-

scale environments. Our findings go beyond performance comparison and show promising

directions for future work, which we discuss next.
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7.1 Limitations and Future work

This work can be improved in a few fronts. On the systems front, we see op-

portunity for exploring new parallelization strategies, graph storage models, and hybrid

computing architectures. First, adaptive load balancing schemes such as the hierarchical

work stealing proposed in this work come with nontrivial thread synchronization costs.

We anticipate that parallel work efficiency could be improved if more coarse-grained load

balancing strategies could be used [123], especially considering the skewness of work in

GPM workloads. Naturally the challenge in doing this is to predict how coarse should

the parallel tasks be and we believe that prior knowledge about the underlying input

graph is a promising direction to handle this. Second, we assume in this work that the

input graph is replicated on each worker node, which may be an issue considering that

real-world huge graphs were never so ubiquitous. We highlight at this point that GPM is

an expensive task even for small graphs because of its intractable nature. However, we see

big opportunities to develop subgraph enumeration engines that work independently on

different parts of a graph and are able to combine results with little effort. This is some-

what an well studied problem in graph partitioning community [47, 118], but we highlight

that as far as we know this has not been explored in the context of subgraph enumera-

tion algorithms that have the potential to be even more challenging. Third, considering

the rise of GPU processing applied in GPM context [21, 17, 38] we observe that there is

some interesting directions for future work concerning hybrid system architectures that

combine CPU(s) and GPU(s) processing to accomplish the same GPM task. We under-

stand that there are specifics to GPM tasks that may favor GPU processing (more dense

and regular computation on dense regions of the input graph) or the contrary to favor

CPU processing (on sparse/irregular computation on sparse regions of the input graph).

Given this intuition about the heterogeneous nature of GPM algorithms, we believe hy-

brid approaches could be further explored. Fourth, we also see opportunity for developing

better performance diagnosis tools for GPM, capable of identifying bottlenecks of GPM

programs at low cost. Other interesting research direction for systems is characterizing

and optimizing energy consumption of GPM workloads, especially if we consider relaxed

versions of these problems where partial output is allowed.

On the applications and models front, we believe that this work may allow some

interesting directions concerning multi-paradigm GPM algorithm design and automated

GPM. First, we consider that this work is a first step towards automated, cost-based

optimization GPM processing. Indeed, when the operators of some model are very well

defined we may start reasoning about which combinations of operators or which opti-

mization may work best given some contextual information about the underlying data.

Notice that this is a very well established research area in the database community, how-
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ever, we are not aware of any application model that accomplishes that specifically for

GPM. The closest to this are Neo4j1 and similar systems [63] from the graph database

community that try to express querying on graph using some methodology similar to

relational algebra to optimize execution plans. However, we highlight that the focus of

these graph databases are not on subgraph enumeration and consequently, not directly

applied to GPM. Second, many insights that we provide in Chapter 6 represent promis-

ing directions for future work. For instance, we show consistent opportunity to explore

hybrid multi-paradigm approaches to GPM algorithm design and pruning strategies that

could explore latent implicit conditions for a given pair of input data and program that

could be applied directly to the input graph or inferred based on pattern and/or label-

ing information. Third, because trade-offs exist among alternative paradigms and they

interact differently depending on the characteristics of the input data, we plan to explore

even higher levels of abstraction capable of choosing algorithm designs based on problem

constraints that are most likely to produce better performance results. This aspect may

even facilitate the proposal of improved declarative languages [63, 6, 13] for GPM or even

low-code/no-code tools for practitioners with less expertise on programming.

1https://neo4j.com

https://neo4j.com
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