
Fractal: A General-Purpose Graph Patern Mining
System

Vinicius Dias
Carlos H. C. Teixeira

Universidade Federal de Minas
Gerais

Belo Horizonte, Brazil
viniciusvdias@dcc.ufmg.br

carlos@dcc.ufmg.br

Dorgival Guedes
Wagner Meira Jr.

Universidade Federal de Minas
Gerais

Belo Horizonte, Brazil
dorgival@dcc.ufmg.br
meira@dcc.ufmg.br

Srinivasan Parthasarathy
The Ohio State University

Columbus, USA
srini@cse.ohio-state.edu

ABSTRACT

In this paper we propose Fractal, a high performance and
high productivity system for supporting distributed graph
pattern mining (GPM) applications. Fractal employs a dy-
namic (auto-tuned) load-balancing based on a hierarchical
and locality-aware work stealing mechanism, allowing the
system to adapt to diferent workload characteristics. Ad-
ditionally, Fractal enumerates subgraphs by combining a
depth-irst strategy with a from scratch processing paradigm
to avoid storing large amounts of intermediate state and, thus,
improves memory eiciency. Regarding programmer produc-
tivity, Fractal presents an intuitive, expressive and modular
API, allowing for rapid compositional expression of many
GPM algorithms. Fractal-based implementations outperform
both existing systemic solutions and specialized distributed
solutions on many problems - from frequent graph mining
to subgraph querying, over a range of datasets.

CCS CONCEPTS

· Mathematics of computing → Graph enumeration;
Graph algorithms; · Computer systems organization→
Distributed architectures; · Software and its engineer-

ing→ Distributed programming languages;

KEYWORDS

graph pattern mining; distributed systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for proit or commercial advantage and that
copies bear this notice and the full citation on the irst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic
permission and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3319875

ACM Reference Format:

Vinicius Dias, Carlos H. C. Teixeira, Dorgival Guedes,WagnerMeira
Jr., and Srinivasan Parthasarathy. 2019. Fractal: A General-Purpose
Graph Pattern Mining System. In 2019 International Conference on

Management of Data (SIGMOD ’19), June 30-July 5, 2019, Amsterdam,

Netherlands. ACM, New York, NY, USA, 18 pages. https://doi.org/
10.1145/3299869.3319875

1 INTRODUCTION

Graph pattern mining (GPM) plays an important and increas-
ing role in a number of existing and emerging applications,
from extracting motifs from gene networks [39, 59] to brain
networks [9], from searching for patterns over semantic data
(e.g., RDF) [16] to social media analysis [56], and from com-
munity discovery [3, 14] to link spam detection [34].

Graph algorithms tend to be complex and non-trivial to de-
velop especially in distributed environments. The advent of
Pregel [37] and related graph analytics systems [22, 23, 61]
sought to address this issue by ofering a simpler way to
implement and design eicient distributed variants of algo-
rithms. Unfortunately, such systems are focused on matrix-
based algorithms, and may not be suitable for all GPM prob-
lems [53]. At its core, GPM methods perform subgraph enu-
meration, which may be computationally and storage in-
tensive, where a tremendous amount of intermediate state
can be generated even when running on small-scale net-
works (e.g., 5-10k nodes). Moreover, the irregular topology
presented in scale-free graphs makes GPM quite challenging
regarding load balancing in parallel and distributed settings.
This complexity, in turn, has led to the development of

distributed algorithms for specialized (domain-speciic) GPM
problems, such as frequent subgraph mining [1], motif count-
ing [47], and clique counting [19], that do not generalize
to other GPM problems. Systems such as Arabesque [53]
and NScale [45] have emerged as irst generation, general-
purpose solutions for GPM. While both potentially ofer pro-
gramming interfaces suitable for processing coarse-grained
GPM applications, their computation models fail to support

Research 14: Graphs 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1357

https://doi.org/10.1145/3299869.3319875
https://doi.org/10.1145/3299869.3319875
https://doi.org/10.1145/3299869.3319875

ine-grained interactive analysis. In fact, those systems adopt
a BFS-style subgraph enumeration to balance the work at the
end of each synchronization step, generating and shuling a
huge amount of intermediate state between workers, what
leads to increased overhead at larger scales.
In this work we propose Fractal, a distributed system for

general-purpose graph pattern mining built on Spark [64].
Our design goals for Fractal are simple: (i) a lexible yet sim-
ple API focused on analyst productivity; and (ii) an eicient
systemic support for a range of GPM kernels on modern dis-
tributed architectures that handles their irregular memory
and computational demands. In order to meet those twin
goals, Fractal makes the following contributions.

• Flexible, expressive and compositional API. Fractal’s API and
programming model are designed from the ground up to be
simple and to relect fundamental GPM operations (denoted
as primitives). In this work, we show how the API is lexible
to compose a wide range of GPM applications using just a
few lines of code. To the best of our knowledge no other
system can tackle such a range of GPM applications.
• Mitigating irregular memory demand. The amount of in-
termediate state in GPM applications is hard to predict, be-
ing a signiicant source of overhead. The use of modern
garbage collected languages ś widely used in popular stacks
for data analytics ś compounds this issue leading to high
unpredictability in performance [20, 36, 41, 42]. Fractal com-
bines a depth-irst strategy with a łfrom scratch processing”
paradigm to keep the memory requirements bounded. Our
results show that it can improve performance and reliability
of GPM applications: executions up to three orders of magni-
tude faster than comparable systems or specialized baselines,
while leaving more memory for the user application.
• Adaptive load balancing. As mentioned, GPM algorithms
are irregular by nature. Balancing the load and minimizing
communication overhead is central to performance eiciency.
Fractal incorporates a novel hierarchical work stealing and
communication mitigating strategy that is aware of task
locality and reduces the communication overhead, achieving
a nearly-ideal load balancing in many scenarios.
• Novel graph reduction and iltering. Fractal relies on a novel
graph reduction optimization to speed up the enumeration
phase of many GPM methods. A data analyst can specify a
reduced (materialized) view of the input graph. This poten-
tially beneits a range of GPM applications, reducing their
memory footprint, when subgraphs (or patterns) of interest
lie in localized (sub-)regions of the original input graph.
• Extensive evaluation. We perform an extensive evaluation
of Fractal, and demonstrate that it outperforms both special-
ized distributed algorithms and general-purpose systems on
a range of GPM kernels and input graphs.

2 BACKGROUND

We briely review the model and key deinitions needed to
understand Fractal and the GPM algorithms executed in it.

2.1 Graph Model

Without loss of generality, we adopt in this work an input
graph G with vertices and non-directed edges which may
have multiple labels as described in Deinition 1.

Definition 1. (Graph) A graph G is represented by three

sets, V (G), E(G) and L(G) which are the sets of vertices, edges,

labels (or keywords) of G and one map function fL . Each edge

e = (v,u) ∈ E(G) connects a pair of vertices v and u ∈ V (G).

The edges are not directed and there are no self-loops in G.

Formally, (vi ,vj) = (vj ,vi) and e = (vi ,vi) < E(G). The

labels (keywords) of a vertex or an edge are deined according

the function fL : V (G) ∪ E(G) → P(L(G)) (power set).

Definition 2. (Subgraph) LetG and S be graphs. We say

that S is an subgraph of G if V (S) ⊆ V (G) and E(S) ⊆ E(G).

According to Deinition 2, a subgraph is represented by a
set of vertices and edges embedded in the input network G.
In particular, Fractal works with connected subgraphs.

Isomorphism and paterns. Graph isomorphism (Def. 3)
is the problem of verifying whether two (sub)graphs have an
identical structure (topology), being fundamental to a variety
of GPM applications such as motif counting, frequent pattern
mining and graph matching. Given a set of (sub)graphs S =
{Si , S2, . . . , SN }, the isomorphism relation divides S into
equivalence classes, where each class contains graphs that
are isomorphic among themselves.

Definition 3. (Isomorphism) Two (sub)graphsG and H

are isomorphic if there is a bijective function π :V (G) ⇒ V (H)

such that (vi ,vj) ∈ E(G) if (π (vi),π (vj)) ∈ E(H).

The concept of pattern is related to isomorphism since
two (sub)graphs G and H in the same class have the same
pattern. In practice, a pattern is a template for a subgraph and,
thus, a subgraph is an instance of its pattern. In this work, we
adopted the depth-irst search (DFS) coding algorithm [62]
to determine the canonical labeling of a labeled (sub)graph S ,
which is given by the function ρ(S). Basically, the canonical
labelling is an string that represents the pattern of a given
(sub)graph through the ordering of its edges. This is is a
popular and an eicient algorithm to perform isomorphic
checks (i.e., comparison of strings) between (sub)graphs.

2.2 Graph Pattern Mining Problems

Let G be input graph and S = {S1, . . . , SN } be the set all
of distinct subgraphs and P = {P1, . . . , PM } be the set of
canonical patterns, both enumerated fromG . In other words,

Research 14: Graphs 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1358

P =
⋃

S ′∈S{ρ(S
′)}). We briely review popular GPM kernels

studied in the literature and also evaluated in Fractal.

Motif extraction & counting. A motif P is deined as a
connected and induced subgraph pattern in an input graphG .
The goal is to count frequencies of all motifs (patterns) having
k vertices, i.e., we want to compute |{S ′ ∈ S | |V (S ′)| =

k and ρ(S ′) = P ′}|, ∀P ′ ∈ P. This kernel usually ignores the
labels in G and it is widely used in bioinformatics [39, 44].

Cliques listing & counting. A k-node clique is a com-
plete subgraph having k nodes in an input graph. In this case,
only the topology of the subgraphs is considered. Thus, we
may formally deine the set of k-node cliques (or k-cliques)

in G as follows: {S ′ ∈ S | |V (S ′)| = k and |E(S ′)| = k (k−1)
2
}.

Frequent subgraph mining (FSM). An FSM task seeks
to obtain all frequent subgraph patterns from a labeled input
graphG . A pattern P is frequent if it has a support s(P) above
a threshold α , i.e., if s(P) ≥ α . Generally, s(P) is calculated
based on the set of isomorphic subgraphs, deined as {S ′ ∈
S | ρ(S ′) = P}. In this work, we adopt the minimum image-

based support [7] as the support function s(·) to leverage
the anti-monotonic property. Therefore, we may deine the
result set of FSM as {P ′ ∈ P | s(P ′) ≥ α }. For a more detailed
description of FSM, see [17, 53].

Subgraph querying or listing. Querying a subgraph pat-
tern is maybe the naivest GPM application known. The task
is to list all the subgraphs in an input graphG that are iso-
morphic to a user-deined pattern P . Formally, we seek to
retrieve the following set of subgraphs: {S ′ ∈ S | ρ(S ′) = P}.

Keyword-based subgraph search. Given an attributed
graphG with keywords (or labels) on nodes and edges and a
query represented by a set of keywords K = {w1, . . . ,wC },
the task is to retrieve subgraphs inG as follow. A subgraph
S ′ ∈ S is retrieved if its keywords cover K and each edge in
E(S ′) is responsible for, at least, one these covers. Formally,
this problem seeks to ind the set of subgraphs given by
{S ′ ∈ S | K ⊆ L(S ′) and K 1 L(S) \ fL(e),∀e ∈ E(S

′)}. This
problem is widely studied in the context of RDF data [16].

3 COMPUTATION MODEL

Fractal adopts a model with three types of computation
primitives: extension, aggregation, and iltering. An analyst
may design a sequence of these primitives to solve a partic-
ular GPM problem. Primitives are applied on subgraphs of
the input graph G to enumerate more subgraphs, to prune
the search space, or to summarize the results:

Extension (E). This is a core primitive of the Fractal
computation model, responsible for generating the solution
space of any GPM problem - speciically, it represents the
subgraph enumeration step of GPM problems. This primi-
tive receives a set of subgraphs as input and extends them
by using their own neighborhood in G, producing a set of

e5

e6

e7

e8

e9

e0

e1

e2

e3

e4

e10

p

v0

v2

v1v3 v4v5

v6

edge-induced vertex-induced pattern-induced (p)

{v4, e5}, {v5, e8} {v4, e5, e6, e7} {v4, e5, e7}

{v4, e6}, {v5, e9} {v5, e8, e9} {v5, e8, e9}

{v4, e7}, {v6, e10} {v6, e10}

Figure 1: Subgraph extensions: the user can deine

three types of subgraph extensions. The subgraph

above (composed of vertices and edges in solid lines)

has 6, 3 and 2 possible extensions for the edge-, vertex-

and pattern-induced extensions, respectively.

larger subgraphs. Our model supports the following exten-
sion strategies, which are illustrated in Figure 1:

• Edge-induced extension expands a subgraph S edge-
by-edge, considering its neighborhood, which is often
used for frequent subgraph mining.
• Vertex-induced extension expands a subgraph S vertex-
by-vertex, that is, whenever a vertex v is added, all
edges that connect v to S are included. This is often
used in motif extraction, clique listing kernels.
• Pattern-induced extension expands subgraphs vertex-
by-vertex, but guided by a user-deined reference pat-
tern P (e.g., graph querying and matching).

The above extension strategies must avoid redundant
(symmetric) enumerations. Fractal addresses this issue by
combining the extension algorithmswith canonical subgraph
checking, for vertex(edge)-induced subgraphs [53], or sym-
metry breaking [24], for pattern-induced subgraphs.

Aggregation (A). The aggregation primitive summarizes
a set of subgraphs into patterns and metrics for downstream
processing. In other words, it receives a set of subgraphs as
input and maps them to key/value entries for subsequent re-
duction. For aggregation one needs to deine three functions:
(1) a mapping function to extract a key from a subgraph; (2) a
second mapping function to extract a value from a subgraph;
and (3) a reduction function to reduce the values sharing
the same key. This computation primitive is fundamental for
any GPM application that relies on frequency counts, or any
application that works with aggregates (e.g., sum).

Filtering (F). The iltering primitive within the Fractal
model is used to prune subgraphs that do not meet the ap-
plication criteria. Currently, Fractal supports two options.

Research 14: Graphs 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1359

The local iltering alternative prunes a subgraph by using
local information. For instance, in clique listing algorithms,
a subgraph may be trivially classiied as a non-clique by just
examining its local topology. The aggregation iltering option
prunes a subgraph by considering a source of information
provided by an upstream aggregation primitive. This particu-
lar ilter can be leveraged within algorithms like FSM, where
subgraphs that do not belong to the current set of frequent
subgraphs may be discarded. Note that both types of iltering
are performance-critical for a range of applications as they
limit the enumeration of irrelevant subgraphs and reduce
the search space for a given task.

Fractal’s design allows a developer to specify a computa-
tion worklow concisely and typically in fewer steps than
contemporary GPM systems [45, 53]. For instance, counting
3-cliques can be implemented in a single step: three exten-
sions followed by an aggregation primitive (EEEA-) and a
single synchronization point (represented as "-"). Other BFS-
style GPM systems for the same tasks [45, 53] require at least
three steps separated by synchronization points. Addition-
ally, their BSP [57] design result in expensive synchroniza-
tion and communication overheads if either the input or the
intermediate data being processed are large.

3.1 Fractal Programming Interface

Designing a lexible and expressive API for distributed GPM
applications is challenging. An API is expressive when it
is easily readable and interpretable and it is lexible when
it is capable of representing a wide range of applications.
Fractal’s API is subgraph-centric [10, 45, 53] in that it exposes
a small set of intuitive and modular operators to construct
complicated GPM applications. All operators act on a state
object, called a fractoid. We discuss these in turn next.

Fractoid. A fractoid holds the state of a Fractal applica-
tion during the execution process. Such state includes an ar-
ray of primitives representing the user worklow and any ag-
gregation result required for computation. One can derive a
fractoid from either another fractoid or from the input graph.
Fractal supports three types of fractoids ś edge-induced,
vertex-induced and pattern-induced.

Initialization operators (Fig. 2). The entry point to an
application is the FractalContext, responsible for coniguring
and initializing all the required resources to build and run
Fractal routines. Since our current implementation runs on
top of Spark [64], we instantiate a FractalContext (C1) directly
from a SparkContext. In order to obtain the irst fractoid, the
user must irst create a fractal graph from the context by pass-
ing an input path (I1) and then ask for a vertex-induced frac-
toid (B1), an edge-induced fractoid (B2) or a pattern-induced
fractoid (B3) (see Figure 3 for a vertex-induced example).

C1 new FractalContext(sc: SparkContext)

I1 def adjacencyList(path: String): FractalGraph

B1 def vfractoid(): Fractoid // by-vertex

B2 def efractoid(): Fractoid // by-edge

B3 def pfractoid(p: Pattern): Fractoid // by-pattern

Figure 2: Initialization operators.

1 val sc = new SparkContext(..)

2 val fctx = new FractalContext(sc)

3 val graph = fctx.adjacencyList (graphPath)

4 val vfrac = graph.vfractoid()

Figure 3: Initialization of a Fractal application.

Workflow operators (Fig. 4) . These operators are used
to describe the processing performed over fractoids in order
to explore the space of solutions (subgraphs) or must be
explored in the input graph.

W1 def expand(depth: Int): Fractoid

W2

def aggregate[K,V](aggName: String)(

key: (Subgraph, Computation, K) => K,

value: (Subgraph, Computation, K) => V,

reduction: (V, V) => V,

aggFilter: (K, V) => Boolean

): Fractoid

W3

def filter(

f: (Subgraph, Computation) => Boolean

): Fractoid

W4

def filter(aggName: String)(

f: (Subgraph, Aggregation[K,V]) => Boolean

): Fractoid
W5 def explore(n: Int): Fractoid

Figure 4: Worklow operators.

The expand function (W1) represents the extension prim-
itive (E) and enumerates subgraphs by extending the sub-
graphs given as input. Considering a GPM application that
uses the edge-induced extension method, anm-expansion
over k-edge subgraphs generates all (and unique) subgraphs
of size (k +m) edges. Fractal also supports user-deined ag-
gregations (W2), which represent the aggregation primitive
(A). For instance, in motif counting, one may be interested
in creating an aggregation where the key is the subgraph
pattern (key), the value is the number one (value), the reduc-
tion function is a simple sum operation (reduction). The last
parameter (aggFilter) is an optional iltering step applied to
the inal reduced mappings.
The iltering primitive (F) is mapped to the Fractal API

via two options: local ilter (W3) and aggregation ilter (W4).
The local ilter prunes subgraphs based on local information.
Alternatively, the aggregation ilter discards a subgraph by
considering the result of an aggregation operator: a key/-
valuemapping (Aggregation[K,V]). Our last worklow operator

Research 14: Graphs 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1360

(W5) is used to keep applications clean and concise. This op-
erator chains a worklow fragment n times, simplifying the
implementation of iterative algorithms.

Output operators (Fig. 5). These operators represent the
application output of subgraphs or aggregations for down-
stream analysis. A straightforward way to expose those out-
puts is through Spark’s built-in support of RDDs (of sub-
graphs (O1)), or alternatively through key/value pairs (O2),
obtained from a named aggregation. We highlight that be-
cause we use RDDs to export Fractal’s output, the system
inherits its resilience for these operators.

O1 def subgraphs(): RDD[Subgraph]

O2 def aggregation(aggName: String): RDD[(K,V)]

Figure 5: Output operators.

Implementing applicationswith Fractal. Fractal’s API
allows an intuitive and interactive experience since every
partial result of a worklow (fractoids) can be easily executed
and veriied separately. Users can combine any sequence of
primitive components and perform successive reinements
in their analysis. Existing systems lack such support since
they view applications as atomic jobs waiting to be executed
in batch mode [28, 45]. We present the implementations of
the various applications used in this paper in Appendix A.

4 FRACTAL SYSTEM DETAILS

Fractal considers a distributed and parallel environment, or-
ganized with a single application master and many workers.

System architecture. As illustrated in Fig. 6, the user
interacts with Fractal by submitting commands to the ap-
plication master (a). The master contains the execution en-
gine, which manages the underlying cluster resources and
coordinates the execution of fractal steps (b). Workers rep-
resent instances that perform the actual GPM processing.
Speciically, each worker (w0, . . . ,wn−1) is a process running

w0

c0 c1 ...

w1

...

wn-1

... cm-2 cm-1

...

master
execution engine

(b)

(c)

(a)

Figure 6: System architecture. (a) Programs are created

with the Fractal API and submitted to the master. (b)

The master initiates the setup of workers and sched-

ules Fractal steps. (c) Workers execute the steps.

on multiple cores (c0, . . . , cm−1). Communication occurs be-
tween master and workers, but also among workers via an
actor-model paradigm. Such design eases the initialization
and the asynchronous assignment of work amongst workers
(c).

System initialization. The master is the irst to start,
followed by the workers. The master acts as a central point
for hand-shaking among workers. Worker initialization in-
cludes the creation of internal structures ś including a global
identiier for the worker and each one of its cores ś and the
reading of the input graph in-memory. Input graphs may be
stored on the local ile system or on HDFS [50]. Then, each
worker sends a registration message to the master. When
the master acknowledges the registration of the workers, it
broadcasts their addresses. Thus, every worker knows how
to reach the others, in addition to the master.

Scheduling and execution. The application master pre-
pares the application worklow for execution. Inspired by the
concept of dependencies among distributed collections [64],
a sequence of primitive components can be pipelined when-
ever there are no global synchronization points. A synchro-
nization point is required when the user calls an output
operator, triggering the evaluation of the worklow (O1 and
O2, Fig. 5), or when the worklow contains a ilter clause
that reads from an aggregation not yet computed (W4, Fig. 4).
We denote such blocks of pipelined computation as fractal
steps, and they are the scheduling units of our system. The
master submits fractal steps to be executed by the workers.
Within each submission, the application master piggybacks
the fractoid for execution. Then, each core of every worker
starts the execution over an empty subgraph and an initial
partition of extensions from the input graph, determined
on-the-ly using its unique core identiier. For both vertex-
and pattern-induced fractoids, the initial extensions are sin-
gle vertices, while edge-induced fractoids use single edges
(Fig 1).

Proof of concept over Spark and Akka. Our current ver-
sion of Fractal is built on top of Spark 2.0 [64], however its
design is independent enough to it other platforms. Specii-
cally, we leverage Spark’s batch computation model to rep-
resent and schedule Fractal steps for execution. Thus, each
Fractal step corresponds to a Spark job, and the computation
performed by each core corresponds to the processing of a
Spark partition in the underlying system. This part covers all
communication requirements between master and workers
(Fig. 6b). Additionally, we extend Spark’s execution model

Research 14: Graphs 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1361

with an actor model provided by Akka 2.5.31, so we can sup-
port communication between workers (Fig. 6c). Fractal is
open-source and its source code is publicly available2.

4.1 Memory-eicient Subgraph Processing

Many graph pattern mining (GPM) algorithms sufer from
a combinatorial explosion of the search space, often requir-
ing the maintenance of large intermediate state (memory)
and thereby overloading the underlying system. This is the
case of current systems since they adopt a BFS-style sub-
graph enumeration to balance the work at the end of each
synchronization step [45, 53].

Motivating example. To illustrate this issue, we estimate
the amount of memory necessary to keep all vertex-induced
subgraphs occurring in the medium-sized Mico network [17].
We consider that each subgraph can be represented solely by
its vertices (with nomemory overheads), i.e., NumberOfVertices
× BytesPerVertex. The memory requirements quickly be-
come unbearable for subgraphs with four or ive vertices,
resulting in demands of 163.27GB and 46.37TB, respectively.

Solution. Fractal avoids the need to maintain intermediate
state by (1) enumerating subgraphs with a depth-irst search
algorithm and (2) recomputing the subgraphs from scratch
after a synchronization point. This is possible due to Fractal’s
computational model, designed to support multiple primi-
tive components in a single Fractal step. Speciically, Fractal
uses a data structure called SubgraphEnumerator (Fig. 7). Each
enumerator is identiied by an enumeration preix, which
represents the current subgraph under extension process.
Extensions candidates of this subgraph are generated with
computeExtensions(). If the preix is empty, then this function
generates the set of vertices or edges of the input graph (ac-
cording to the fractoid’s type and the respective core). In
Fractal, an enumerator is consumed once the extend() pro-
cedure is processed, which updates the next enumerator
with the current subgraph augmented by one pre-computed
extension.

class SubgraphEnumerator {

val prefix: Subgraph

def computeExtensions(): Unit

def extend(): SubgraphEnumerator

}

Figure 7: Subgraph enumerator: a data structure de-

signed to support transparent subgraph enumeration.

1https://akka.io
2http://github.com/dccspeed/fractal

Algorithm 1 dfs-processing(step)

1: senum ← create-subgraph-enumerator()

2: process(senum, step, 0)
3: function process(senum, step, idx)
4: p ← step[idx]; sд← senum.preix

5: if is-extension(p) then ▷ E

6: senum.computeExtensions()

7: while not empty(senum) do

8: process(senum.extend(), step, idx + 1)

9: else if is-filter(p) and filter(sд) then ▷ F

10: process(senum, step, idx + 1)
11: else if is-aggregation(p) then ▷ A

12: aggregate(key(sд), value(sд))

Algorithm 1 presents a DFS-based method executed by
each core to process subgraphs in Fractal. Its input is a Frac-
tal step, i.e., a sequence (array) of pipelined primitives to
be executed. The algorithm initiates by creating an empty
subgraph enumerator, which is given as parameter to the
function process (lines 1-2). This function (lines 3-12) applies
the primitives over the subgraph enumerators recursively,
reusing the data structures on each enumeration level. For
example, the irst primitive is indexed by zero in the step

array. In case of extension (lines 4-8), the algorithm invokes
the method recursively for each possible extension of the
current subgraph. In case of iltering (lines 9-10), we only
call the process function pointing to the next primitive if
subgraph passes the ilter. Finally, the algorithm handles the
aggregation according to the user’s reduction function (lines
11-12), which marks the end of the recursive call.

Algorithm 2 from-scratch-execution(fractoid)

1: worklow ← primitives(f ractoid)
2: steps← array(); step← array(); idx ← 0

3: while idx < len(worklow) do

4: p ← worklow[idx++]

5: if idx = len(worklow) or is-sync-point(p) then

6: add(steps, copy(step))

7: add(step,p)

8: for step in steps do

9: dfs-processing(step)

10: function is-sync-point(p)
11: return is-global-filter(p) and p.aggregation()

Our subgraph enumeration strategy is memory-eicient
due to its DFS-style and the reuse of the subgraph enumer-
ator on each enumeration level. However, many GPM ap-
plications (e.g., FSM) require multiple global aggregations,
making impracticable the use of Algorithm 1 directly. In such

Research 14: Graphs 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1362

https://akka.io
http://github.com/dccspeed/fractal

scenarios, Fractal recomputes the primitives from scratch to
reduce the intermediate state of the GPM applications. Algo-
rithm 2 shows how Fractal splits the fractoid worklow into
steps and submits them for execution. The input of from-
scratch-execution is a fractoid, containing the sequence
of primitives used to build the steps (line 1). Primitives are
assigned to the current step until a synchronization point,
which is marked by a ilter reading from an aggregation
(W4) that is not yet computed (lines 10-11) or the end of the
worklow (line 3). Whenever a primitive matches a synchro-
nization point, the algorithm adds a copy of the current step
to the pool of steps and proceeds accumulating other prim-
itives (line 6). Thus, steps always accumulate computation
from their ancestors: primitives in steps {0, . . . i − 1} also
belong to step i . Finally, the algorithm calls the enumeration
procedure (Alg. 1) for each step built previously (lines 8-9).
We highlight that aggregation results fromW4 operators are
not recomputed: the execution engine reuses their results on
every subsequent step once they are computed.
An important advantage of the proposed solution is that

Fractal will not crash due to out-of-memory errors and, hence,
more memory is available for the user-deined aggregations.
Also, we avoid the cost of accessing precomputed subgraphs,
including potentially out-of-core accesses. However, two po-
tential concerns regarding our solution are: (1) the cost of
recomputing the subgraphs from scratch and (2) it can lead
to imbalance among workers. In fact, trading of memory for
redundant processing is beneicial since the cost of enumer-
ating subgraphs (during the combinatorial explosion phase
of the algorithm) will dominate the execution time of a GPM
task. The load imbalance among workers is addressed next.

4.2 Near-optimal Load Balancing

Although pipelining is a powerful feature for big-data work-
loads [64], for graph mining it can be tricky due to the ir-
regular nature of degree distributions in real graphs. In such
scenarios, load-balancing becomes key to achieve both good
performance and resource utilization since standard pipelin-
ing levers task independence to coordinate parallelism.

Motivating example. Figure 8 shows the resource utiliza-
tion (CPU) of Fractal when we employ a simple pipeline on a
single machine with 28 cores for an application that inds all
4-cliques. Each core initially takes a partition of the graph
vertices and enumerates all 4-cliques rooted by vertices in
their respective partition. A critical scalability issue is ob-
served: the resource utilization drops very quickly as some
cores inish their work early, while others keep running as
stragglers for a long time (long tail).

Solution. In this work, we propose a hierarchical work

stealing strategy for dynamic work balancing, improving

Figure 8: Subgraph enumeration without any work

balancing: CPU is not well utilized due to skewness.

the resource utilization of the underlying system. Our strat-
egy is composed of two levels the irst one focuses on commu-
nication within cores of the same worker (internal work steal-
ing, orWSint), and the second focuses on coordination across
cores of diferent workers (external work stealing, or WSext).
Naturally, thread communication within a single worker (in-
ternal) is more eicient, since access to the memory is (often)
shared. On the other hand, inter-process communication is
expensive because it involves serializing, sending, receiving
and deserializing data structures, as we will see next. Thus,
WSint is always preferred toWSext .
We implement work stealing directly over the subgraph

enumerator abstraction (see Fig. 7). In particular, we make
the extension function (extend()) thread-safe and eicient, to
allow a ine-grained work sharing among execution cores.
Upon an extend() call, Fractal copies the subgraph preix,
consumes an extension (thread-safe), and adds the new ex-
tension to the preix of the new enumerator. Because we
end up with a very short critical section (consumption of
extensions), work stealing in Fractal comes with a small over-
head and little contention among execution threads. Indeed,
the depth-irst enumeration maintains one enumerator per
extension level, which can be locked and consumed indepen-
dently. Subgraph enumerators also facilitate work sharing
among distributed workers: a subgraph enumerator (preix)
represents a unique independent piece of work that can be
shipped to any worker for processing.
For example, consider the execution state presented in

Figure 9, where subgraphs are enumerated vertex-by-vertex
from the graph of Figure 1 in parallel. The four available cores
(c’s) are organized in two workers (w ’s) and all cores inished
their original assigned work, except for c0. In case (a), c1 can
accommodate aWSint by extending the second subgraph
enumerator from c0, since both belong to w0. Hence, such
operation generates a new subgraph enumerator with the
preix composed of edge (v0,v2) in c1, ceasing its idleness and
mitigating imbalance. In case (b), c2 triggers aWSext because
no core in w1 has work to share. Thus, c2 sends a work
stealing request tow0, which in turn forwards the request to
c0. A separate thread inw0 is then responsible for extending
the irst non-empty c0 enumerator and shipping this piece
of work back to the requester c2 atw1. Such procedure ills

Research 14: Graphs 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1363

w1w0

c0 c1 c2 c3

v0

v1 v2 v3

v4 v5 v6

v0

v1 v2 v3

v4 v5 v6

v1

v0

v3 v4 v5

v6

v2 v0

v4 v5 v6

v3

v0

v5 v6

v3

v4

v0 v4

v0

v6

v3

v5

...

(a) (b) (c)

v0 v2

v3

v4 v5 v6

v0

v6

v3

v4v5

...

v0 v2

v3

v4 v5 v6

v4

...

v0 v3

v5v6

-

-

WSext

WSint

prefix

extensions

enumerator

Figure 9: Work stealing happens (a)(c) internally

among cores of the same worker or (b) externally

among cores of diferent workers. To reduce network

communication, we use remote work stealing only

when no other local core has work to share.

c2 with a new enumerator with a preix composed by edge
(v0,v3). Finally, in case (c), c3 leverages the previous external
request to perform a low-costWSint with c2. The result is a
new enumerator with preix composed of path (v0,v3,v5).

As we show in Sec. 5.2.2, our method is adaptive to difer-
ent workload characteristics and does not assume anything
about the input distribution. Also, we verify empirically the
importance of the two levels of work stealing and show sig-
niicant gains on CPU utilization and system’s performance.

4.3 Fast Enumeration via Graph Reduction

Exploratory routines over graph data often exhibit locality
during processing: the working set of visited vertices and
edges is reduced or it shrinks as the algorithm progresses.
Also, because the cost of graph processing engines is directly
related to the input size, being able to work with just the es-
sential regions of the graph can signiicantly reduce the over-
all cost of such computations. This is the case of subgraph
querying, keyword search, and other search algorithms.

Motivating example. Consider the keyword search prob-
lem over a knowledge graph derived fromWikidata [18], and
queries Q1 = {paris, revolution,author } and Q2 = {tom,

cruise,drama}. First, we execute these queries on the origi-
nal graphG . Then, we execute the same queries on a reduced

graphG ′, built by keeping only those vertices and edges that
are associated to, at least, one query keyword. We compare
the execution on G against the execution onG ′, in terms of
the reduction of the input graph and the extension cost (EC)
associated with the queries. Speciically, EC represents the
number of tests performed to determine the set of candidate
subgraph extensions throughout the execution of the query.
The outcome is a signiicant reduction in the extension cost
performed by Fractal. In particular, for Q1 we may see re-
ductions of 54.97% and 65.27% in the number of vertices and
edges, respectively. More important, such pruning also re-
duced the extension cost (EC) by 92.54%. We observe similar
results for Q2, with an impressive cost reduction of 99.87%.

Solution. Fractal supports a novel graph reduction pro-
cedure that allows an user to specify a reduced graph for
downstream processing. The graph reduction procedure is
only applied between two fractal steps (at the synchroniza-
tion point) to minimize overheads and design complexity.
Formally, the goal of graph reduction is to specify a reduced
graphGi for each step i , based on the subgraphs enumerated
during the previous step (Si−1). This can be represented as
a recurrence relation (Equation 1), where functions fi are
algorithm-speciic and provided by the user.

Gi =

{

fi ({}) i = 0

fi (Si−1) i > 0
(1)

Fractal exposes the graph reduction operators (see Fig. 10)
to the user via the ilter function (fi).These special operators
are called from a fractal graph in order to ilter vertices (R1)
and/or edges (R2). For example, before querying the input
graph, the user can use these operators to ilter vertices
and edges that should not belong to any of the subgraph
results. Note that many GPM applications can leverage this
procedure transparently. For instance, Frequent Subgraph
Mining (FSM) can use such a procedure to ensure that only
the vertices and edges that actively have participated in at
least one subgraph of the previous fractal step are kept in the
next reduced graph. In such cases, at each step, Fractal keeps
track of the subset of extensions necessary to accomplish
the previous step re-computation, transferring the burden
from the user to the system.

R1 def vfilter(f: (v: Vertex, g: Graph) => Boolean)

R2 def efilter(f: (e: Edge, g: Graph) => Boolean)

Figure 10: Graph reduction operators are used to ilter

the input graph to reduce subgraph enumeration cost.

Research 14: Graphs 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1364

5 EXPERIMENTAL RESULTS

All experiments, unless otherwise speciied, were run on a
cluster with 10 machines, each one having an Intel Xeon
E52680 with hyperthreading (14 cores, 28 execution threads)
and 25 MB cache, 500 GB RAM, running CentOS Linux 3.10.
The machines were connected by Gigabit Ethernet.

Table 1: Graphs used for evaluation.

Graph (G) |V(G)| |E(G)| |L(G)| Density

Mico 100K 1.08M 29 2.1 × 10−4

Patents 2.74M 13.96M 37 3.7 × 10−6

Youtube 4.58M 43.96M 80 4.1 × 10−6

Wikidata 15.51M 18.55M 2,569 1.5 × 10−7

Datasets. In Table 1 we describe the graphs used in our
evaluation. Note that such datasets were also used in previ-
ous works in order to evaluate graph mining algorithms and
systems [1, 17, 53]. In Mico [17], vertices are authors (labeled
with their research ield) and edges represent co-authorship.
Patents [25] has patents published in US as vertices and their
citations as edges; the labels on vertices are given by the
year in which the patents were released. Youtube [11] con-
tains videos posted from February 2007 to July 2008. In this
graph, there is an edge between two vertices if their videos
are related. The label of a vertex is computed by combining
the video’s rating and length. Finally, the Wikidata graph
(≈4M unique keywords) used in this work was derived from
a knowledge base [58]. Such network models subjects and
objects as vertices and it uses predicates as edges. Edge labels
represent diferent types of predicates. Moreover, vertices
and edges are associated with a set of keywords. Throughout
this section we refer to these graphs by their name followed
by a suix indicating whether that speciic version is single-
labeled (-SL) or multi-labeled (-ML). Conidence intervals are
presented for a conidence of 95%.

JVM-based Baselines. We compare Fractal (a JVM-based
system) with several specialized JVM-based distributed algo-
rithms including those for Motifs (MRSUB [47]), subgraph
querying (SEED [33]) and Cliques (QKCount [19]). We also
compare Fractal with general-purpose JVM-based systems,
such as Arabesque [53], and GraphFrames [13] where possi-
ble.Wewere unfortunately unable to compare it to NScale [45]
(the code is not public and the authors were unable to provide
us with their code). The GPM kernels used are implementa-
tions of the problems described in Section 2.2.

5.1 Fractal: Comparative Performance

Motifs. Figure 11 compares the performance of Fractal
with baselines (Arabesque and MRSUB) on the Motifs bench-
mark. Considering the single-labeled input graphs (Mico-SL
and Youtube-SL), we observe that when the amount of work
is small, Arabesque outperforms Fractal (see Mico-SL with 3-
vertex motifs). Fractal pays a small setup overhead to support
its work stealing environment and such overhead becomes
signiicant when the amount of work is small. However,
Fractal becomes more eicient as we target larger subgraphs
(4- or 5-node motifs) or when a larger network is involved
(Youtube-SL), obtaining a speedup of up to 1.6× for Mico-SL
and 3.10× for Youtube-SL. MRSUB, a recent specialized ap-
proach performs worse than the other two methods across
the board (running out of memory in one instance).

o
u

t
o

f
m

em
o

ry

10

1000

3 4 5

Vertices

R
u
n
ti

m
e

(s
)

−
−

 l
o
g
−

sc
al

e

MRSUB Arabesque Fractal

10

1000

3 4

Vertices

R
u
n
ti

m
e

(s
)

−
−

 l
o
g
−

sc
al

e

MRSUB Arabesque Fractal

(a)Mico-SL (b) Youtube-SL

Figure 11: Motifs runtime onMico-SL and Youtube-SL.

Cliques. We evaluate the cliques application on Fractal
and baselines (Arabesque, GraphFrames and QKCount) in
Figure 12. Fractal outperforms Arabesque in almost every
scenario. On Youtube-SL the performance gains are even
more obvious (see Figure 12b). Fractal obtains speedups that
range from 5.19× to 12.87× against Arabesque in all conig-
urations considered. On this larger dataset, since Arabesque
has to keep the subgraphs (compressed in ODAGs) from one
step to another, this imposes extra memory and network
costs to maintain that information consistent among work-
ers. Arabesque, however, is able to mine 3-cliques faster than
Fractal on Mico-SL (again due to the setup overhead).

Fractal competes well with the state-of-the-art, QKCount
(a distributed algorithm for clique counting), outperform-
ing it on many settings, while being slower on Mico-SL for
cliques of size six. Fractal’s mechanism to control memory
pressure, eicient work stealing and its method to leverage
pipelined computations and extension primitives (described
in Section 3) allow it to compute cliques eiciently, without
the need to keep any intermediate state.

FSM. We evaluate the performance of the FSM application
implemented over Fractal, Arabesque, and ScaleMine [1], a
high-performance specialized implementation. Scalemine
relies on a two phase approach: in the irst phase it estimates

Research 14: Graphs 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1365

o
u
t

o
f

m
e
m

o
ry

o
u
t

o
f

m
e
m

o
ry

10

1000

4 5 6

Vertices

R
u

n
ti

m
e
 (

s)
 −

−
 l

o
g

−
sc

a
le

GraphFrames QkCount Arabesque Fractal

ou
t o

f
m

em
or

y

ou
t o

f
m

em
or

y

ou
t o

f
m

em
or

y

ou
t o

f
m

em
or

y

ou
t o

f
m

em
or

y

ou
t o

f
m

em
or

y

ou
t o

f
m

em
or

y

10

1000

4 5 6 7 8 9 10

Vertices

R
un

tim
e

(s
)

−−
 lo

g−
sc

al
e

GraphFrames QkCount Arabesque Fractal

(a)Mico-SL (b) Youtube-SL

Figure 12: Cliques runtime on Mico-SL and Youtube-

SL. GraphFrames often ran out of memory.

search-space loads and uses that information for load balanc-
ing in the second phase. While Scalemine produces exactly
the same set of frequent patterns, as Fractal and Arabesque,
it does not retain the exact support counts for them (i.e.,
the frequency counts are approximate). For this set of ex-
periments, we consider two labeled graphs and we vary the
minimum support of the algorithm (see Figure 13).

0

500

1000

1500

2000

2500

20000 21000 22000 23000 24000

Support

R
u
n
ti

m
e

(s
)

Arabesque

ScaleMine

Fractal

0

200

400

600

800

250000 255000 260000 265000 270000

Support

R
u
n
ti

m
e

(s
)

Arabesque

ScaleMine

Fractal

(a) Patents-ML (b) Youtube-ML

Figure 13: FSM performance. Fractal’s stateless charac-

teristic allows competitive scalability with Scalemine.

While Fractal has the initial setup overhead (for work
stealing), Scalemine’s irst phase (also used for load estima-
tion) can be quite expensive especially when there is less
overall work [1]. Fractal’s stateless operation provides a bet-
ter scalability against Arabesque, showing speedups of up
to 4.57× (when the support is 20k). For higher values of sup-
port, it outperforms ScaleMine (in spite of being an exact
algorithm) due its fast and balanced enumeration strategy,
achieving a speedup of 4.12× when the support is 24k. For
lower values of support, Scalemine outperforms Fractal. This
is a surprisingly good result for Fractal, since Scalemine is
implemented on C++ with MPI, demonstrating the efective-
ness of work stealing, limiting memory pressure and graph
reduction optimizations within Fractal.

q1 q2 q3 q4 q5 q6 q7 q8

Figure 14: Queries for subgraph querying evaluation.

o
u
t

o
f

m
em

o
ry

o
u
t

o
f

m
em

o
ry

o
u
t

o
f

m
em

o
ry

o
u
t

o
f

m
em

o
ry

1

10

100

1000

q1 q2 q3 q4 q5 q6 q7 q8

Query

R
u
n
ti

m
e

(s
)

−
−

 l
o
g
−

sc
al

e

Arabesque SEED Fractal

o
u
t

o
f

m
em

o
ry

o
u
t

o
f

m
em

o
ry

o
u
t

o
f

m
em

o
ry

o
u
t

o
f

m
em

o
ry

o
u
t

o
f

m
em

o
ry

o
u
t

o
f

m
em

o
ry

10

1000

q1 q2 q3 q4 q5 q6 q7 q8

Query

R
u
n
ti

m
e

(s
)

−
−

 l
o
g
−

sc
al

e

Arabesque SEED Fractal

(a) Patents-SL (b) Youtube-SL

Figure 15: Subgraph querying performance.

Subgraph Querying. In Figure 15, we evaluate the per-
formance of the subgraph querying application on Fractal,
SEED and Arabesque. SEED is the state-of-the-art subgraph
enumeration system implemented over Hadoop, which com-
putes larger subgraphs by joining smaller ones. We use the
same queries supported by SEED [33] to evaluate our system
(see Fig. 14). We implemented the same queries in Arabesque,
for comparison with a general purpose approach for GPM.

Considering the Patents-SL graph (Figure 15a), SEED out-
performs Fractal only for q7, because the execution plan
generated in this case is most efective. Speciically, SEED
computes the matches of the pattern q3 and joins them to
obtain q7, reducing signiicantly the subgraph enumeration
cost. Meanwhile, Arabesque executions inish successfully
only for queries that are easier to enumerate (q1 and q4)
or have fewer edges (q2 and q3). The other executions fail
with out-of-memory errors since the number of subgraphs
and their sizes start to pressure the memory, even for com-
pressed representations like Arabesque’s ODAGs. Fractal’s
pattern-induced extension and stateless enumeration allow
a more eicient subgraph querying, specially compared to
edge-induced approaches like Arabesque, across the board.
On Youtube-SL (Figure 15b), SEED also performs best

when the query allows an execution joining plan with over-
lapping structures. Indeed, SEED outperforms Fractal for
cliques (q1, q4, and q5) and for q7, because of that pattern’s
symmetry. In the remaining conigurations, Fractal outper-
forms SEED (q2,q6, andq8) or remains competitive (q3). Over-
all, again Fractal demonstrates competitive performancewith
a state-of-the-art specialized baseline.

Keyword Search. For keyword search, due to space limi-
tations, we report the runtime performance in Section 5.2.3.

5.2 Fractal Drilldown

Fractal’s key systemic contributions (memory demand reduc-
tion, hierarchical work stealing and graph reduction) were
found to be useful across a range of GPM kernels. We next
drill down on some of those in turn, with speciic kernels.

Research 14: Graphs 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1366

5.2.1 Memory footprint analysis. In this section we drill
down on the memory costs of a couple of applications w.r.t
the memory optimization facilitated by Fractal’s computa-
tion model. Our metric is the average memory usage among
all workers in the execution. A lower value of this metric
indicates a better memory footprint, i.e., less prone to out

of memory errors or long garbage collection pauses (which
may cause performance degradation and unpredictability).

We consider the following applications for this experiment:
(1) cliques, representing applications in which the enumera-
tion phase is the bottleneck; and (2) motifs, an application
that not only enumerates all subgraphs up to a given depth
but has to perform expensive isomorphic checks and to ag-
gregate pattern counts. We use Arabesque as baseline for this
analysis since it is the only distributed system for general-
purpose GPMwith source code available. Table 2 summarizes
our results.

Table 2: Memory per worker.

|V | Arab. (GB) Frac. (GB) ×

Cliques
Youtube-ML

3 22.9 ± 1.2 10.9 ± 0.1 2.1×

4 57.5 ± 1.4 12.8 ± 0.1 4.5×

5 117.4 ± 1.4 11.8 ± 0.1 10.0×

6 204.3 ± 1.1 11.6 ± 0.0 17.6×

Motifs
Mico-ML

3 0.2 ± 0.0 0.4 ± 0.0 0.6×

4 1.8 ± 0.3 0.4 ± 0.0 4.9×

5 46.9 ± 1.0 0.9 ± 0.3 49.9×

First, we consider the multi-labeled network, Youtube-ML.
Fractal is able to keep the memory requirements relatively
constant (range from 10.88 and 12.84 GB). Some variation is
expected due to the non-deterministic behavior of the Java
Virtual Machine (e.g., garbage collection) in multi-threaded
environments. Meanwhile, in Arabesque, another GPM sys-
tem that levers JVM, we see a signiicant increase in the
memory used by workers, which is a direct outcome of how
the system keeps its intermediate state across enumeration
depths. Speciically, subgraphs are kept in the memory of
each worker in a compressed data structure (ODAG) per
pattern [53]. As there are more patterns templates in a multi-
labeled network, Arabesque must keep more ODAGs in mem-
ory, increasing the working memory of the workers. In par-
ticular, the workers of the baseline system require an average
of 204.28 GB of memory in the enumeration depth of ive,
while Fractal needs only 11.58 GB. This represents a reduc-
tion factor of 17.64× regarding memory.
Second, we consider the Motifs application. In this ex-

ample, we show that the intermediate state of workers sig-
niicantly grows in the baseline system as we increase the

exploration depth (even for moderately sized) graphs. Indeed,
the amount of memory used by Arabesque increases 49.86×.
On the other hand, Fractal’s executions require no more than
0.94 GB of memory per worker (on average).

5.2.2 Hierarchical Work Stealing. In this section, we evalu-
ate the hierarchical work stealing environment within Fractal.
We focus on the FSM algorithm, which is a multi-step appli-
cation and, consequently, has the potential to exhibit a richer
per-level behavior. The input graph considered is Patents-ML
and we set the support to 20k for this drilldown experiment.

Since our work stealing strategy is composed of two levels
of balancing (internal and external), our evaluation consider
four conigurations: 1.Disabled, where we disable both levels;
2.Internal, where we enable only the internal work stealing
(WSint); 3.External, where we enable only the external work
stealing (WSext); and 4.Internal+External, where we enable
both levels (WSint +WSext), representing our complete strat-
egy. We seek to evaluate the efectiveness of each of them in
mitigating imbalance. Figure 16 presents the execution times
of the parallel tasks discriminated by step and scenario. The
rows represent the ive fractal steps and columns represent
the four working stealing conigurations. The y-axis is the
individual runtime of each task (x-axis).

In the irst coniguration (1.Disabled), we can see the raw
imbalance in load. As expected, the execution becomes more
skewed for later steps, as we are enumerating bigger sub-
graphs (step 4 is a extreme case, for example). However, we
observe a signiicant improvement in skew reduction across
all steps when the internal work stealing is enabled (2.Inter-
nal). Note that, in this case, some imbalance across workers
still exists since the original work is only allowed to be shared
among threads in the same process. In the next coniguration,
we enabled only the external work stealing (3.External). We
may see a better load balancing among the tasks, as each
one has more options to steal work, but the communication
overhead of work requests increases the execution time in
comparison with the internal work stealing alone (2.Internal).
Finally, the coniguration which combines both strategies
(4.Internal+External) results in near perfect load balancing
as well as reduces the communication overhead in Fractal.

5.2.3 Graph Reduction. We evaluate the efectiveness of
the graph reduction in Fractal. Our goal is to compare our
implementation performance over the original graph (G)
against the performance over the reduced graph (G0), ob-
tained by removing vertices and edges that do not contain
any of the query keywords.We focus on the following evalua-
tion queries [16]: Q1 = {woody,allen, romance}, Q2 = {mel ,

дibson,director },Q3 = {classic, f antasy, f unny,author }, and
Q4 = {author , classic,award}. Figure 17 shows the runtime
(log-scale) as we vary the number of cores in the executions.
The results for queriesQ1 andQ2 are presented in pairs (one

Research 14: Graphs 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1367

Original work Work stealing

1.Disabled
1.23s

 0.0

 0.2

 0.5

 0.8

 1.0

 1.2

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Step 0
2.Internal

1.62s
3.External

3.39s
4.Internal+External

2.17s

 0.0

 1.0

 2.0

 3.0

1.Disabled
1.63s

 0.0

 0.5

 1.0

 1.5

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Step 1
2.Internal

1.38s
3.External

2.23s
4.Internal+External

1.46s

 0.0

 0.5

 1.0

 1.5

 2.0

1.Disabled
25.55s

 0.0

 10.0

 20.0

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Step 2
2.Internal

5.15s
3.External

19.13s
4.Internal+External

5.54s

 0.0

 5.0

 10.0

 15.0

 20.0

1.Disabled
574.80s

 0.0

 200.0

 400.0

 600.0

R
u
n
ti

m
e

(s
ec

o
n
d
s)

Step 3
2.Internal

56.52s
3.External

147.28s
4.Internal+External

54.16s

 0.0

 50.0

 100.0

 150.0

1.Disabled
8335.23s

 0.0

 2000.0

 4000.0

 6000.0

 8000.0

R
u
n
ti

m
e

(s
ec

o
n
d
s)

Step 4
2.Internal
595.94s

3.External
559.63s

4.Internal+External
481.94s

 0.0

 200.0

 400.0

 600.0

Figure 16: Work stealing evaluation. Imbalance be-

comes evident with load balancing strategies disabled

(1.Disabled). Internal work stealing allows a good

intra-worker load balancing at low communication

cost (2.Internal). External work stealing allows an ei-

cient load balancing at a higher communication over-

head (3.External). Applying both strategies gives the

best trade-of between load balancing and communi-

cation overhead (4.Internal+External). Times of each

step are noted on top of each chart.

for each query) and indicate whether the graph reduction
optimization is used. The execution of the queries Q3 and
Q4 without the optimization did not terminate within a time
limit of four hours (14,400s) - only the results with the graph
reduction optimization is included (most of which take at
most a few 100 seconds or less). Overall we see anywhere
from one to two orders or magnitude improvement in run-
time for keyword search queries using the reduced graph.

We may see signiicant beneits from graph reduction for
queries Q1 and Q2. However, the performance and efective-
ness of the graph reduction optimization depends on the
query being executed. For instance, the subgraph extension

Q1

Q2

Q3

Q4

28 56 84 112 140 168 196 224 252

0
100
200
300

0
2000
4000
6000

0

2000

4000

0
50

100
150

Number of cores

R
u
n
ti

m
e

(s
ec

o
n
d
s)

G

G0

Figure 17: Graph reduction beneits (Go), for keyword

search. ForQ1 andQ2, graph reduction is efective in re-

ducing the input graph (particularly in Q2 where run-

time is reduced drastically), and scales well. ForQ3 and

Q4, we only show executions with graph reduction en-

abled since the standard alternative timed out.

cost for Q1 is reduced by 4.5× using the graph reduction
optimization (see Section 4.3) which is substantial, but not
as much as for Q2. The performance improvement obtained
with Q2 means that Q2’s subgraphs lie in less-dense regions,
which reduces the number of subgraphs enumerated by Frac-
tal (extension cost was 77.96× lower). On the other hand,
queries that match often in dense regions of the graph are
prone to encounter several invalid extensions that are not
relevant to the query and degrade performance.

Now, we evaluate the scalability of Fractal as we increase
the number of cores for Q3 and Q4. Note that, these queries
present a heavier workload compared to the previous two.
Regarding Q3, we observe a near perfect speedup, having a
extension cost of approximately 1.5T . In addition, the execu-
tion of queryQ4 presents an extension cost of approximately
46B, while maintaining an eiciency of over 60%.

5.2.4 COST analysis. Motivated by McSherry et al. [38], we
evaluate Fractal against state-of-the-art single-thread graph
mining algorithms in terms of the COST metric. The COST
is deined as the number of execution threads a system needs
to outperform an eicient single-thread implementation. We
lever recent single threaded JVM based implementations for
this purpose. For the Motifs, Cliques and Graph Querying
(q2 and q3) kernels we use Gtries [15, 46]. For FSM we use
Grami [17]. Representative results are reported in Figure 18
and additional results for cliques and triangles are discussed,
along with other baselines (e.g. Neo4j) in Appendix C.

One may observe that the COST typically range from 3-4
threads. For instance, Fractal beats Gtries for motifs (36.5k
seconds) with 3 cores (≈ 30k seconds). Fractal outperforms
both Gtries for cliques (2416s) and Grami (1154s) when using

Research 14: Graphs 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1368

100

1,000

10,000

100,000

1,000,000

1 4 7 10

Number of cores

R
u
n
ti

m
e

(s
)

lo
g
−

sc
al

e

Motifs (Youtube−SL, 4 vertices)
Cliques (Mico−SL, 6 vertices)
FSM (Youtube−ML, 260k)
Graph Querying (Youtube−SL, q2)
Graph Querying (Youtube−SL, q3)

Gtrie (full)
Gtrie (6−clique)
GraMi
Gtrie (q2)
Gtrie (q3)

Figure 18: COST analysis: number of cores that Fractal

needs to reach state-of-the-art single-threadmethods.

4 cores, taking 844s and 872s respectively. Finally, Fractal
outperforms the baseline for Graph Querying in both queries:
the baseline evaluates q2 in 2328s against 1055s for Fractal
with 4 threads andq3 in 474s against 289s for Fractal also with
4 threads. These numbers are representative for a large ma-
jority of our experimental settings. The positive exceptions
to this (lower COST) arise in long-running tasks dominated
by enumeration computations ś here we see COST values as
low as 2 threads (e.g. motifs on Mico). The negative excep-
tions (higher COST) arise when overheads dominate due to
short duration tasks. For example, with the 3-cliques count-
ing application on Youtube the COST value blows up to 16
threads (of Fractal). The overheads associated with initializa-
tion, actor set up and thread management cause this blowup.
We discuss these issues in Section 6.

5.2.5 Scalability. We review the strong scalability of Fractal
on four of our most time-consuming kernels (see Figure 19).
We observe that if suicient work exists the eiciency of
Fractal is reasonable when compared to a single node (28-
thread) implementation. For motifs kernel, Fractal achieves
around 85% eiciency. For cliques kernel, Fractal achieves
around 90% parallel eiciency on Mico-SL and Youtube-SL.
The eiciency for motifs and cliques is higher because enu-
meration dominates the cost of these applications. For FSM,
a challenging task for most graph systems (due to the num-
ber of aggregations and data transfers required), we observe
around 75% parallel eiciency except when there is insui-
cient work (Youtube-ML,support:255K). For subgraph query-
ing, the eiciency depends on the query: patterns that are
harder to enumerate (q6) achieves better performance in
Fractal ś around 80% eiciency ś than more symmetric and
dense ones (q2, q7) ś around 65% eiciency. Aggregations in
the latter two applications lead to increased data movement
costs, limiting parallel eiciency.

6 OVERHEADS AND LIMITATIONS

In this section we briely review where each optimization
may not pay of, including overhead costs.

Constant memory demand. This optimization does not
pay of when available memory on the machine exceeds the
needs of the application. In such cases there is no need to re-
compute as onemay process directly bymaintaining relevant
embedding lists. We observed this in several short-duration
tasks. For example, small motifs (Figure 11), and triangles
on smaller datasets (Appx. C). Note that the overhead cost
associated with enabling this optimization is negligible but
it can lead to signiicant load imbalance (see Sec. 4.2). We
next discuss the overheads associated with the work stealing
component of Fractal which seeks to alleviate this problem.

Work stealing. We use a low-overhead proiler3 to moni-
tor Fractal executions and measure the time spent on work
stealing related code. Our experiments consider several algo-
rithms and number of workers. We ind that the overhead of
work stealing is about 1.05%, with standard error of 0.44%.
In terms of the initialization cost of the actor system, we
observe this typically takes about one to two seconds. Such
overheads impact especially the performance of executions
with reduced amount of work. For instance, see Fig. 11 the
3-node motifs case.

Graph reduction. This optimization is efective in appli-
cations exploiting some local properties from the input graph,
such as graph querying. In cases where the target subgraph
instances occur in dense regions of the input graph, graph
reduction can only reduce the input graph itself but not the
magnitude of subgraph enumerations which often is the dom-
inant cost. For instance, consider extracting k-cliques from
Mico-SL and from its reduced version composed of only the
vertices and edges occurring in at least one k-clique. While
the reduction itself is substantial ś at least 29.09% and 75.28%
less vertices and edges, respectively ś, the extension cost (EC)
(which dominates computation time) remains unchanged.
The net reduction in computation time is a negligible 0.5%,
accounting for overhead costs of about 1%.

7 RELATEDWORK

A popular distributed fault-tolerant system, Pregel [37], of-
fers a łthink like a vertex" (TLV) programming paradigm,
which simpliies the design of graph analytics algorithms (e.g.
Pagerank, HITS, belief propogation and shortest path) [6, 21,
31]. Over the past years many optimizations and variants
of Pregel’s TLV model have been proposed [22, 51, 54, 61].
Some of these systems [51, 54] present a subgraph-centric
model, but it is not transparent to the users and subgraphs
are used to reduce data communication among machines.
Other matrix-inspired cloud-based graph processing sys-
tems such as System-ML [5], PEGASUS [30] and GBASE [29]
has also been examined. However, in such systems every

3https://github.com/jvm-proiling-tools/async-proiler

Research 14: Graphs 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1369

https://github.com/jvm-profiling-tools/async-profiler

28
56
84

112
140
168
196
224
252
280

28 56 84 112 140 168 196 224 252 280

Number of cores

S
p
ee

d
u
p

Fractal (Mico−SL, 4 vertices)
Fractal (Mico−SL, 5 vertices)
Fractal (Youtube−SL, 3 vertices)
Fractal (Youtube−SL, 4 vertices)

28
56
84

112
140
168
196
224
252
280

28 56 84 112 140 168 196 224 252 280

Number of cores

S
p
ee

d
u
p

Fractal (Mico−SL, 5 vertices)
Fractal (Mico−SL, 6 vertices)
Fractal (Youtube−SL, 4 vertices)
Fractal (Youtube−SL, 7 vertices)
Fractal (Youtube−SL, 10 vertices)

28
56
84

112
140
168
196
224
252
280

28 56 84 112 140 168 196 224 252 280

Number of cores

S
p
ee

d
u
p

Fractal (Patent−ML, supp=20k)
Fractal (Patent−ML, supp=21k)
Fractal (Youtube−ML, supp=250k)
Fractal (Youtube−ML, supp=255k)

28
56
84

112
140
168
196
224
252
280

28 56 84 112 140 168 196 224 252 280

Number of cores

S
p
ee

d
u
p

Fractal (Patent−SL, q7)
Fractal (Youtube−SL, q2)
Fractal (Youtube−SL, q6)

(a)Motifs (b) Cliques (c) FSM (d) Subgraph Querying

Figure 19: Fractal scalability.

iteration typically requires a full matrix operation, which
may be overkill for many applications (e.g. keyword search)
where only a small part of the graph needs to be active (Sec-
tion 5.2.3). Adapting such systems for graph pattern mining
problems such as FSM and clique listing is non-trivial.

Single-machine systems such as Galois [40], GraphChi [32],
Ligra [49] are tightly integrated to the underlying architec-
ture. However, these eforts lack the ability to process it-
erative problems that accrue large intermediate state and
none support the central primitives for GPM algorithms (e.g.
frequent graph mining) or work in a heterogeneous, live
environment, with machine downtimes (fault tolerance).
There have indeed been algorithmic advances or special-

ized frameworks for each of the applications considered, like
graph pattern matching [2, 33, 48, 65], graph motif extrac-
tion [52], frequent subgraph mining [1, 4, 26, 35], and also
RDF and keyword search related problems [16, 27]. While
many of those frameworks are highly eicient for their indi-
vidual application domain, none of them, to our knowledge,
generalize and support diferent types of applications (see
comparison with Scalemine [1] in Figure 13).

Arabesque [53] and NScale [45] represent the irst genera-
tion of general purpose distributed systems that operate on a
subgraph-centric programming model for graph processing.
NScale (built on Hadoop) was not designed to handle FSM
and related GPM problems, and it is unclear if it can scale to
problems that generate large intermediate state (potentially
overwhelming the Hadoop File System). On the other end of
the spectrum, G-Miner [10] is a brand new MPI-based C++
framework for graph pattern mining and subgraph explo-
ration. Unlike the above systems and Fractal, G-Miner does
not focus on programmer productivity and cannot tolerate
machine downtime. Indeed, the code for triangles counting
in G-miner has 192 lines of C++, while it may be described
in Fractal with 3 lines only (3-cliques).

8 CONCLUSIONS

We present a novel system (Fractal) to support various graph
pattern mining and matching algorithms in a distributed
setting. Fractal relies on a simple computational model and
a lexible, expressive and composable API (expressing key

primitives) to enhance programmer productivity. Fractal’s
system architecture employs memory optimizations, a novel
graph reduction strategy coupled with an integrated hier-
archical work stealing environment, supporting irregular
graph computations eiciently on a modern data center. Re-
sults validate the efectiveness of Fractal over general pur-
pose systems as well as over specialized algorithmic frame-
works on a wide range of graph pattern mining kernels.

Fractal is under continuous improvement. On the system
architecture front we are examining ways to improve its scal-
ability via adaptive system-algorithm co-designs for such
GPMkernels [8].We plan to examine if data placement strate-
gies for partitioning the input graph [27, 60] can help in this
context. We also plan to support dynamic graphs [43].

9 ACKNOWLEDGMENTS

This work is partially funded by Fapemig, CNPq, CAPES,
and by projects InWeb (MCT/CNPq 573871/2008-6), INCT-
Cyber (MCT/CNPq 465714/2014-5), MASWeb (FAPEMIG-
PRONEX APQ-01400-14), EUBra-BIGSEA (H2020- EU.2.1.1
690116, Brazil/MCTI/RNP GA-000650/04), and EUBra-Atmo-
sphere (H2020-EU.2.1.1 777154) as well as grants from the US
National Science Foundation: CNS-1513120; CCF-1629548;
CCF-1747447; a grant from the Ohio Supercomputing Cen-
ter - PAS0166; and gifts from Adobe Research and Google.
The authors would like to thank G. Siganos, S. Blanas and
Y. Wang, for their constructive feedback on this work. The
irst author would also like to thank the Ohio State Univer-
sity (OSU) for sponsoring a pre-doctoral visit to OSU, where
some of this work was initiated. Any opinions, indings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily relect the
views of the corresponding funding agencies or institutions.

Research 14: Graphs 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1370

REFERENCES
[1] Ehab Abdelhamid, Ibrahim Abdelaziz, Panos Kalnis, Zuhair Khayyat,

and Fuad Jamour. 2016. Scalemine: Scalable Parallel Frequent Subgraph
Mining in a Single Large Graph. In Int. Conf. for High Performance

Computing, Networking, Storage and Analysis (SC ’16).
[2] Foto N Afrati, Dimitris Fotakis, and Jefrey D Ullman. 2013. Enumerat-

ing subgraph instances using map-reduce. In Data Engineering (ICDE),

2013 IEEE 29th Int. Conf. on. IEEE, 62ś73.
[3] Austin R. Benson, David F. Gleich, and Jure Leskovec. 2016. Higher-

order organization of complex networks. Science (2016).
[4] Mansurul A Bhuiyan and Mohammad Al Hasan. 2015. An iterative

MapReduce based frequent subgraph mining algorithm. Trans. on

Knowl. and Data Engineering (2015).
[5] Matthias Boehm, Michael W. Dusenberry, Deron Eriksson, Alexan-

dre V. Evimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold
Reinwald, Frederick R. Reiss, Prithviraj Sen, Arvind C. Surve, and
Shirish Tatikonda. 2016. SystemML: Declarative Machine Learning on
Spark. Proc. VLDB Endow. (2016).

[6] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale
hypertextual Web search engine. Computer networks and ISDN systems

(1998).
[7] Björn Bringmann and Siegfried Nijssen. 2008. What is Frequent in a

Single Graph?. In Paciic-Asia Conf. on Advances in Knowl. Discovery

and Data Mining (PAKDD’08).
[8] Gregory Buehrer, Srinivasan Parthasarathy, and Yen-Kuang Chen. 2006.

Adaptive Parallel Graph Mining for CMP Architectures. In Int. Conf.

on Data Mining. 97ś106.
[9] E. Bullmore and O. Sporns. 2009. Complex brain networks: graph the-

oretical analysis of structural and functional systems. Nature Reviews
Neuroscience (2009).

[10] Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan, Da Yan, and James
Cheng. 2018. G-Miner: an eicient task-oriented graph mining system.
In EuroSys Conf. ACM, 32.

[11] Xu Cheng, Cameron Dale, and Jiangchuan Liu. [n. d.]. Dataset for
łStatistics and Social Network of YouTube Videos”. http://netsg.cs.sfu.
ca/youtubedata/. ([n. d.]).

[12] Maximilien Danisch, Oana Denisa Balalau, and Mauro Sozio. 2018.
Listing k-cliques in Sparse Real-World Graphs. In WWW.

[13] Ankur Dave, Alekh Jindal, Li Erran Li, Reynold Xin, Joseph Gonza-
lez, and Matei Zaharia. 2016. GraphFrames: An Integrated API for
Mixing Graph and Relational Queries. In Int. Workshop on Graph Data

Managem. Exp. and Sys. (GRADES ’16). ACM, New York, NY, USA.
[14] Imre Derényi, G Palla, and Tamás Vicsek. 2005. Clique Percolation in

Random Networks. Physical Review Letters (2005).
[15] Ahmad Naser eddin and Pedro Ribeiro. 2017. Scalable Subgraph Count-

ing Using MapReduce. In Symp. on Applied Computing (SAC ’17).
[16] Shady Elbassuoni and Roi Blanco. 2011. Keyword Search over RDF

Graphs. In Int. Conf. on Information and Knowl. Managem. (CIKM ’11).
[17] Mohammed Elseidy, EhabAbdelhamid, Spiros Skiadopoulos, and Panos

Kalnis. 2014. GRAMI: Frequent subgraph and patternmining in a single
large graph. Proc. VLDB Endow. (2014).

[18] Fredo Erxleben, Michael Günther, Markus Krötzsch, Julian Mendez,
and Denny Vrandečić. 2014. Introducing Wikidata to the Linked Data
Web. In Int. Semantic Web Conf. (LNCS). Springer.

[19] Irene Finocchi, Marco Finocchi, and Emanuele G Fusco. 2014. Clique
counting in MapReduce: theory and experiments. arXiv preprint

arXiv:1403.0734 (2014).
[20] Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Vaswani, Dimitrios

Vytiniotis, Ganesan Ramalingam, Manuel Costa, Derek G. Murray,
Steven Hand, and Michael Isard. 2015. Broom: Sweeping Out Garbage
Collection from Big Data Systems. In Workshop on Hot Topics in Oper-

ating Systems.

[21] Andrew V Goldberg and Chris Harrelson. 2005. Computing the short-
est path: A search meets graph theory. In Symp. on Discrete algorithms.

[22] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. 2012. PowerGraph: Distributed Graph-Parallel Com-
putation on Natural Graphs.. In Symp. on Operating Systems Design

and Implementation.
[23] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw,

Michael J Franklin, and Ion Stoica. 2014. GraphX: Graph processing
in a distributed datalow framework. In Symp. on Operating Systems

Design and Implementation.
[24] Joshua A Grochow and Manolis Kellis. 2007. Network motif discovery

using subgraph enumeration and symmetry-breaking. In RECOMB.
[25] Hall B. H., A. B. Jafe, and M. Trajtenberg. 2001. The NBER Patent

Citation Data File: Lessons, Insights and Methodological Tools. http:
//www.nber.org/patents/. (2001).

[26] Steven Hill, Bismita Srichandan, and Rajshekhar Sunderraman. 2012.
An iterative MapReduce approach to frequent subgraph mining in
biological datasets. In Conf. on Bioinformatics, Computational Biology

and Biomedicine.
[27] Jiewen Huang, Daniel J Abadi, and Kun Ren. 2011. Scalable SPARQL

querying of large RDF graphs. Proc. VLDB Endow. (2011).
[28] Eslam Hussein, Abdurrahman Ghanem, Vinicius Vitor dos Santos Dias,

Carlos H.C. Teixeira, Ghadeer AbuOda, Marco Seraini, Georgos
Siganos, Gianmarco De Francisci Morales, Ashraf Aboulnaga, and
Mohammed Zaki. 2017. Graph Data Mining with Arabesque. In Int.

Conf. on Managem. of Data (SIGMOD ’17).
[29] U. Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, and Chris-

tos Faloutsos. 2012. Gbase: An Eicient Analysis Platform for Large
Graphs. The VLDB Journal (2012).

[30] U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. 2009.
PEGASUS: A Peta-Scale Graph Mining System Implementation and
Observations. In Int. Conf. on Data Mining (ICDM).

[31] Jon M Kleinberg. 1999. Authoritative sources in a hyperlinked envi-
ronment. J. ACM (1999).

[32] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi:
Large-scale Graph Computation on Just a PC. In USENIX Conf. on

Operating Systems Design and Implementation (OSDI’12).
[33] Longbin Lai, Lu Qin, Xuemin Lin, Ying Zhang, Lijun Chang, and Shiyu

Yang. 2016. Scalable distributed subgraph enumeration. Proc. VLDB
Endow. (2016).

[34] Yutaka I. Leon-Suematsu, Kentaro Inui, Sadao Kurohashi, and Yutaka
Kidawara. 2011. Web SpamDetection by Exploring Densely Connected
Subgraphs. In Int. Conf. on Web Intelligence and Intelligent Agent Tech-

nology (WI-IAT ’11).
[35] Wenqing Lin, Xiaokui Xiao, and Gabriel Ghinita. 2014. Large-scale fre-

quent subgraph mining in mapreduce. In Int. Conf. on Data Engineering.
IEEE.

[36] Martin Maas, Tim Harris, Krste Asanović, and John Kubiatowicz. 2015.
Trash Day: Coordinating Garbage Collection in Distributed Systems.
In Workshop on Hot Topics in Operating Systems.

[37] Grzegorz Malewicz, MatthewHAustern, Aart JC Bik, James C Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A
system for large-scale graph processing. In Int. Conf. on Managem. of

Data.
[38] Frank McSherry, Michael Isard, and Derek G Murray. 2015. Scalability!

But at what COST. In Workshop on Hot Topics in Operating Systems.
[39] R.Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.

2002. Network motifs: simple building blocks of complex networks.
Science (2002).

[40] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Light-
weight Infrastructure for Graph Analytics. In Symp. on Operating

Systems Principles (SOSP ’13).

Research 14: Graphs 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1371

http://netsg.cs.sfu.ca/youtubedata/
http://netsg.cs.sfu.ca/youtubedata/
http://www.nber.org/patents/
http://www.nber.org/patents/

[41] KhanhNguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu, Sanazsa-
dat Alamian, and Onur Mutlu. 2016. Yak: A High-Performance Big-
Data-Friendly Garbage Collector. In Symp. on Operating Systems Design

and Implementation.
[42] Khanh Nguyen, KaiWang, Yingyi Bu, Lu Fang, Jianfei Hu, and Guoqing

Xu. 2015. FACADE: A Compiler and Runtime for (Almost) Object-
Bounded Big Data Applications. In Int. Conf. on Architectural Support

for Programming Languages and Operating Systems (ASPLOS ’15).
[43] Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. 2017. Motifs

in Temporal Networks. In Int. Conf. on Web Search and Data Mining

(WSDM ’17).
[44] Nataša Pržulj. 2007. Biological network comparison using graphlet

degree distribution. Bioinformatics (2007).
[45] Abdul Quamar, Amol Deshpande, and Jimmy Lin. 2016. NScale:

Neighborhood-centric Large-scale Graph Analytics in the Cloud. The
VLDB Journal (2016).

[46] Pedro Ribeiro and Fernando Silva. 2014. G-Tries: A data structure for
storing and inding subgraphs. Data Mining and Knowl. Discovery 28,
2 (2014).

[47] Saeed Shahrivari and Saeed Jalili. 2015. Distributed Discovery of
Frequent Subgraphs of a Network Using MapReduce. Computing

(2015).
[48] Yingxia Shao, Bin Cui, Lei Chen, Lin Ma, Junjie Yao, and Ning Xu.

2014. Parallel subgraph listing in a large-scale graph. In Int. Conf. on

Managem. of Data. ACM, 625ś636.
[49] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph

Processing Framework for Shared Memory. In Symp. on Principles and

Practice of Parallel Programming (PPoPP ’13).
[50] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. 2010. The Hadoop

Distributed File System. In 2010 IEEE 26th Symposium on Mass Storage

Systems and Technologies (MSST). 1ś10. https://doi.org/10.1109/MSST.
2010.5496972

[51] Yogesh Simmhan, Alok Kumbhare, Charith Wickramaarachchi, Soonil
Nagarkar, Santosh Ravi, Cauligi Raghavendra, and Viktor Prasanna.
2014. Goish: A sub-graph centric framework for large-scale graph
analytics. In European Conf. on Parallel Processing. Springer.

[52] Gomonoeorge M Slota and Kamesh Madduri. 2014. Complex network
analysis using parallel approximate motif counting. In Int. Parallel and

Distributed Processing Symp.

[53] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Seraini, Georgos
Siganos, Mohammed J. Zaki, and Ashraf Aboulnaga. 2015. Arabesque:
A System for Distributed GraphMining. In Symp. on Operating Systems

Principles (SOSP ’15).
[54] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish

Tatikonda, and John McPherson. 2013. From łthink like a vertex" to
łthink like a graph". Proc. VLDB Endow. 7, 3 (2013).

[55] Charalampos E Tsourakakis, U Kang, Gary L Miller, and Christos
Faloutsos. 2009. Doulion: counting triangles in massive graphs with a
coin. In Int. Conf. on Knowl. Discovery and Data Mining.

[56] Johan Ugander, Lars Backstrom, and Jon Kleinberg. 2013. Subgraph
Frequencies: Mapping the Empirical and Extremal Geography of Large
Graph Collections. In Int. Conf. on World Wide Web (WWW ’13).

[57] Leslie G Valiant. 1990. A bridging model for parallel computation.
Commun. ACM 33, 8 (1990).

[58] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: A Free Col-
laborative Knowl.base. Commun. ACM (2014).

[59] A. VÃązquez, R. Dobrin, D. Sergi, Oltvai Eckmann, J.-P., Z. N., and A.-L.
BarabÃąsi. 2004. The topological relationship between the large-scale
attributes and local interaction patterns of complex networks. Proc. of
the National Academy of Sciences of the United States of America (2004).

[60] Ye Wang, Srinivasan Parthasarathy, and P. Sadayappan. 2013. Stratii-
cation driven placement of complex data: A framework for distributed
data analytics. In Int. Conf. on Data Engineering.

[61] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2014. Blogel: A block-
centric framework for distributed computation on real-world graphs.
Proc. VLDB Endow. 7, 14 (2014).

[62] Xifeng Yan and Jiawei Han. 2002. gSpan: Graph-based substructure
pattern mining. In Int. Conf. on Data Mining.

[63] Jaewon Yang and Jure Leskovec. 2015. Deining and Evaluating Net-
work Communities Based on Ground-truth. Knowl. Inf. Syst. (2015).

[64] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-tolerant Ab-
straction for In-memory Cluster Computing. In USENIX Conf. on Net-

worked Systems Design and Implementation (NSDI’12).
[65] Zhao Zhao, Guanying Wang, Ali R Butt, Maleq Khan, VS Anil Kumar,

and Madhav V Marathe. 2012. Sahad: Subgraph analysis in massive
networks using hadoop. In Parallel & Distributed Processing Symp.

IEEE.

A APPLICATIONS

Here, we discuss the implementation details of the evaluated
applications using Fractal’s API (Sec. 3.1).

Motifs (Listing 1). The algorithm establishes that the
subgraphs will be induced by vertices, by calling vfractoid

(line 1). Next, we expand the initial empty fractoid by gen-
erating all unique subgraphs with k vertices using the call
expand(k). Then, we use the aggregate operator to conigure
an aggregation represented by pairs of pattern::count. More
speciically, we must specify the aggregation key (line 3), the
initial value one (line 4) and the reduction function (line 5).
Lastly, the actual mapping containing the motifs and their
counts is obtained by calling aggregation in line 6.

1 val motifs = graph.vfractoid.expand(k).

2 aggregate [Pattern,LongWritable] ("motifs",

3 (subg,comp,value) => { subg.pattern },

4 (subg,comp,value) => { value.set(1); value },

5 (value1,value2) => { value1.set(value1.get +

value2.get); value1 }

6).aggregation [Pattern,LongWritable] ("motifs")

Listing 1: Motifs application.

Cliques (Listing 2). This is also a vertex-induced imple-
mentation, as indicated by the vfractoid operator at line 1.
To ind k-cliques, we generate the next set of candidates by
growing the subgraph (expand at line 1) and verifying the
clique satisiability criteria, i.e., the number of edges added
from the last expansion must be equal to the number of ver-
tices in the subgraph minus one (line 2). The last condition
ensures that every vertex must be adjacent to every other
vertex in the subgraph. Finally, we explore this snippet k
times and obtain the k-cliques (line 3).

Frequent Subgraph Mining (Listing 3). We implement
FSM as an edge-induced application. The irst step is to ob-
tain the frequent single edges that will determine the rest of

Research 14: Graphs 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1372

https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/MSST.2010.5496972

1 val cliques = graph.vfractoid.expand(1).

2 filter((subg,comp)=>subg.nEdgesAdded==subg.

nVertices-1).

3 explore(k).subgraphs()

Listing 2: Cliques application.

the processing. We refer to this process as bootstrap (lines 1-
9). It starts by obtaining the irst fractoid, expanding the
subgraphs by one to generate single edges and aggregat-
ing those edges according to their pattern (key) and initial
domain support (value), which implements the minimum

image-based support [7]. Next, we gather the aggregation
result and initialize two sets, the last set of frequent patterns
(newFreqPatts, line 11) and the cumulative set of frequent pat-
terns (freqPatts, line 12). Finally, we repeat a sequence of
iltering not frequent patterns (lines 15-16), adding one edge
to subgraphs that are instance of frequent patterns (line 17)
and performing again a pattern support counting to get the
new set of frequent patterns (lines 18-23). With that we re-
deine the new set of frequent patterns (line 24) and proceed
to check whether this set is not empty and the processing
must continue or empty, indicating the halting condition.

1 val bootstrap = graph.efractoid.

2 expand(1).

3 aggregate [Pattern,DomainSupport] ("support",

4 (subg,comp,value) => { subg.getPattern },

5 (subg,comp,value) => { value.setSuppport(

6 minSupp); value.set(subg); value },

7 (value1,value2) => { value1.aggregate(value2);

8 value1 },

9 (patt,supp) => supp.hasEnoughSupport())

10 var fsm = bootstrap

11 var _fpatts = bootstrap.aggregation("support")

12 var fpatts = _fpatts

13 while (!newFreqPatts.isEmpty) {

14 fsm = fsm.

15 filter [Pattern,DomainSupport] ("support") {

16 (subg,agg) => agg.contains(subg.pattern)}.

17 expand(1).

18 aggregate [Pattern,DomainSupport] ("support",

19 (subg,comp,value) => { subg.getPattern },

20 (subg,comp,value) => { value.setSupport(

21 minSupp); value.set(subg);value },

22 (value1,value2) => { value1.aggregate(value2)

; value1 },

23 (patt,supp) => supp.hasEnoughSupport())

24 _fpatts = fsm.aggregation("support")

25 fpatts = fpatts.union(_fpatts)

26 }

Listing 3: FSM application.

Keyword Search (Listing 4). We implemented the candi-
date retrieval presented in [16]. For such we assume as input
to the algorithm (1) an array of keywords representing the

query (keywords) and (2) an inverted index from keywords to
the set of edge identiiers that contains that word (invIdxs).
Then, we consider an subgraph valid if its last edge (most
recently added) contributes with a keyword that none of the
previous edges represent. For this reason, we only generate
candidates with, at most, the same number of edges than the
length of the keywords array. The iltering function veriies
for each inverted index (line 7) whether there is any other
edge (but the last) that already contemplates the current
keyword (lines 11-12). In airmative case, we conclude that
the last word is not valid w.r.t. the current keyword, so we
proceed to check the remaining indexes if any. Otherwise,
we mark the last edge as valid, i.e., the only condition in
which the iltering function will return true. Finally, we con-
igure an edge-induced fractoid with the iltering function
described above and we explore the worklow by the length
of the keyword query set (lines 21-21).

1 def lastEdgeIsValid(e: Subgraph,

2 c: Computation[Subgraph]): Boolean = {

3 val edges = e.edges(); val nEdges = e.nEdges

4 val lastEdge = edges.getLast()

5 val invIdxs = invIdxsBc.value

6 var valid = false; var i = 0

7 while (!valid && i < invIdxs.length) {

8 val ii = invIdxs(i)

9 if (ii.containsDoc(lastEdge)) {

10 var j = 0

11 while (j < nEdges - 1 &&

12 !ii.containsDoc(edges.get(j))) j += 1

13 if (j == nEdges - 1) valid = true

14 }

15 i += 1

16 }

17 valid

18 }

19 val results = graph.efractoid.

20 filter(lastEdgeIsValid).

21 explore(keywords.length).subgraphs()

Listing 4: Keyword Search application.

Subgraph Querying (Listing 5). This application uses
the pattern-induced extension algorithm, generating new
subgraphs according to a query pattern. In line 1, the user
deines the query. Next, the irst pattern fractoid is initialized
using the query as input (line 2). Finally, the algorithm ex-
tends the subgraphs to the number of vertices in the pattern
query (line 3) and returns the instances as result (line 3).

1 val query = new Pattern(/* pattern edges */)

2 val results = graph.pfractoid(query).

3 expand(query.nvertices).subgraphs()

Listing 5: Subgraph querying application.

Research 14: Graphs 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1373

1 val cliquesopt = graph.

2 vfractoid(new KClistEnum(graph.adjLists())).

3 expand(1).explore(k).subgraphs()

Listing 7: Optimized cliques application.

B ADVANCED PROGRAMMING

Fractal also accommodates advanced features for experi-
enced users. For example, the user may implement a custom
subgraph enumerator (Fig. 7) and pass it as an additional
parameter to the fractoid operators (B1−3, Fig. 2) to support
complex GPM implementations. This is particularly useful
when the application requires a speciic policy for generating
extension candidates, such as sampling, or in case it needs
to maintain state during subgraph enumeration.

1 class KClistEnum extends SubgraphEnumerator {

2 val prefix: Subgraph // current subgraph

3 val dag: Map[Int,IntList] // DAG adj. lists

4 var cur: IntCursor = _ // extensions

5

6 override def computeExtensions(): Unit = {

7 extensions = dag.keys().cursor()

8 }

9 override def extend(): SubgraphEnumerator = {

10 val newAdjLists = new Map[Int,IntList]()

11 val u = cur.elem(); cur.moveNext()

12 val uneighborhood = dag.get(u)

13 for (v <- uneighborhood) {

14 val vneighborhood = dag.get(v)

15 val commonNeighborhood = uneighborhood.

16 intersection(vneighborhood)

17 newAdjLists.put(v, commonNeighborhood)

18 }

19 new KClistEnum(prefix.add(u), newAdjList)

20 }

21 }

Listing 6: KClist subgraph enumerator.

For example, KClist [12] is an optimized clique listing al-
gorithm that reduces the clique search space by using special
views of the input graph on each enumeration depth. The
state to KClist enumeration is a DAG extracted from the
induced-subgraph in the neighborhood of each extension
candidate. We can accomplish such implementation in Frac-
tal using a custom enumerator (Listing 6), responsible for
maintaining the partial DAGs (line 3) and for extending ex-
isting cliques. In this case, the computeExtensions (lines 6-8)
method reads from the current DAG to generate only exten-
sion candidates generating other cliques, while the extend

(lines 9-20) method is responsible for setting up the next
state (DAG) for the new enumerator. Furthermore, the us-
age of custom enumerators within Fractal is transparent:

the user only needs to provide the enumerator parameter
to the vfractoid initialization call. Listing 7 shows the imple-
mentation of this optimized version using Fractal’s API. In
Appendix C we evaluate the COST of this implementation
in Fractal.

C ADDITIONAL RESULTS

Results on Triangle Counting: We now examine the
performance of the triangle counting application on Fractal.
We note that both fast approximate solutions [55] as well as
distributed exact solutions [19] exist for this particular task
but our goal here was to primarily compare Fractal’s perfor-
mance on this benchmark against other graph processing
frameworks that directly support this common benchmark
such as Arabesque [53], GraphFrames [13] and GraphX [23]
in Figure 20a. We note that the triangles implementation in
Fractal is the same as cliques (Listing 2) with k = 3. In this
experiment we use datasets from Table 1 and an additional
single-label graph Orkut [63] with 3.07M vertices represent-
ing users and 117.18M edges representing friendships among
users. Fractal signiicantly outperforms the competing meth-
ods on three of the four datasets (up to an order of magnitude
better), while being slightly slower than Arabesque on the
smallest dataset due to setup overhead.

o
u
t

o
f

m
em

o
ry

1

10

100

Mico−SL Patent−SL Youtube−SL Orkut−SL

Input graphs

R
u
n
ti

m
e

(s
)

−
−

 l
o
g
−

sc
al

e

GraphFrames GraphX Arabesque Fractal

100

10,000

1 4 7 10

Number of cores
R

u
n
ti

m
e

(s
)

lo
g
−

sc
al

e

Neo4j
KClist

Triangles (Orkut−SL)
Opt. Cliques (Mico−SL, 6 vertices)

(a) Triangles performance (b) COST analysis

Figure 20: Additional results.

COST analysis: In Figure 20b we present the COST of
the optimized version of Cliques (Listing 7), and Triangles
(Listing 2 with k = 3). We consider Neo4j and the JVM based
implementation of the KClist [12] algorithm, as single-thread
baselines for triangles and cliques, respectively. Speciically
for Neo4j, we use a built-in triangle counting implementation
that serves as a strong baseline. Neo4j takes 147s to compute
triangles on Orkut, while Fractal takes approximately 100s
with 3 threads. For 6-cliques in Mico-SL, Fractal outperforms
KClist (5032s) using 4 execution threads. Such COST remains
consistent with previous results (Sec. 5.2.4) and shows that
Fractal can also be used to implement highly optimized GPM
algorithms eiciently and efectively.

Research 14: Graphs 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1374

	Abstract
	1 Introduction
	2 Background
	2.1 Graph Model
	2.2 Graph Pattern Mining Problems

	3 Computation model
	3.1 Fractal Programming Interface

	4 Fractal System Details
	4.1 Memory-efficient Subgraph Processing
	4.2 Near-optimal Load Balancing
	4.3 Fast Enumeration via Graph Reduction

	5 Experimental results
	5.1 Fractal: Comparative Performance
	5.2 Fractal Drilldown

	6 Overheads and Limitations
	7 Related Work
	8 Conclusions
	9 Acknowledgments
	References
	A Applications
	B ADVANCED PROGRAMMING
	C ADDITIONAL RESULTS

