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The increasing amount of data being stored and the variety of algorithms proposed to meet processing de-
mands of the data scientists have led to a new generation of computational environments and paradigms.
These environments simplify the task of programmers, but achieving the ideal performance continues
to be a challenge. In this work we investigate important factors concerning the performance of common
big-data applications and consider the Spark framework as the target for our contributions. Based on
that, we present the design and implementation of Janus, a tool that automates the reconfiguration of
MSC: Spark applications. It leverages logs from previous executions as input, enforces configurable adjustment

68M14 policies over the collected statistics and makes its decisions taking into account communication behaviors
68M20 specific of the application evaluated. In order to accomplish that, Janus identifies global parameters that
Keywords: should be updated, or points in the user program where the data partitioning can be adjusted based on
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those policies. Our results show gains of up to 1.9x in the scenarios considered.
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1. Introduction

The evolution of areas like data mining, machine learning, and
data analytics and the increased availability of data sources has
led to the rise of Data Science as a new way of processing and
extracting value from large amounts of data. One strategy that has
become popular to process such data is the use of data-parallel
frameworks, like Hadoop and Spark. They provide data scientists,
or domain experts, with tools that offer high-level abstractions to
express complex data processing algorithms in a way that can be
parallelized to a large number or machines, but without requiring
them to express nor to handle low-level parallelism tasks. Given
its wide acceptance in current big-data scenarios, in this work we
consider Spark in our analysis.

Based on the algorithm description provided by the user in
such high-level abstractions, it is the task of the programming
environment to find the best configuration to maximize execution
performance with good resource usage. That configuration is often
derived from information about the data to be processed and the
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operations to be performed. However, in some cases the solutions
proposed may not be the best ones.

Considering that data science models and algorithms are
irregular and intensive in terms of both computation and com-
munication, performance diagnosis of parallel applications in en-
vironments such as Spark is quite a challenge. Finding the right
partition for the data at each stage of execution, balancing load
during execution and adjusting the environment as application
behavior changes are all difficult tasks to be performed by the
execution framework.

In this work we present Janus,! a tool that can automate the
reconfiguration of Spark applications to allow the framework to
achieve better performance for each application. To do that, first
we present the characterization of traditional data mining algo-
rithms through three different massive data-parallel applications
that we believe represent most of the algorithm patterns found in
the area. Next we describe our tool for adaptive reconfiguration

1 Janus is an ancient Roman god, which frequently symbolized change and
transitions such as the progress of past to future.
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Fig. 1. Execution environment for a data-parallel application.

of recurrent applications and evaluate our solution against conser-
vative and manual partitioning approaches. The results show con-
sistent gains in performance and Janus’s flexibility for extending
policies enhances its applicability in other scenarios.

2. Data-parallel processing execution model

Itis usually the case that data-parallel frameworks express their
computation in terms of the computation applied to data elements.
To achieve parallelism, data-parallel frameworks partition data
and distribute partitions among compute nodes. In this context, we
refer to the Execution Environment as the responsible for describing
how the computational resource is organized in order to give
support to the application computation. Then, given the execution
environment, we describe the Application Model, with bridges the
gap between the distributed computation and the programmer.

In a typical organization for data-parallel processing, the com-
puting resources are organized as a cluster of commodity hard-
ware, known as compute nodes, often organized in racks. This
model considers that Spark parallel applications can be assigned
to a subset of that cluster, using a master/slave architecture. Fig. 1,
shows a Spark application assigned to four compute nodes, where
we have a central coordinator (driver), which acts as master, and
three executors, which play the role of slaves. The execution of an
application starts with the allocation of resources for the executors
and the driver.

The semantic of an application is expressed in terms of compu-
tation applied to data elements. In fact, one can think of a parallel
program as a data flow, composed by operators, inputs and out-
puts. The operators are combined to build an algorithm, with the
output of one operator serving as input to some other operator. The
operations to be applied to data in frameworks like MapReduce [5],
Dryad [14] and Spark [24] are described using DAGs (Directed
Acyclic Graphs). The interpretation given to vertices and edges in
those graphs depends on the system, but they always represent the
way data flows through and is transformed by operators. In Spark,
vertices represent immutable datasets and edges represent the
transformations that are used to produce a new dataset from previ-
ously existing ones. In that way, DAGs make clear the dependencies
along a program execution and are essential to identify when tasks
may be parallelized and when synchronization is necessary.

In Spark, data are stored and processed as collections called Re-
silient Distributed Datasets (RDDs), shown in Fig. 2. The items of an
RDD are organized in partitions, which represent an atomic concept
for computation and caching. The strategy used to associate items
to partitions is determined by the RDD’s partitioner. Hashing and
ranging are common strategies used for partitioning data, besides

a custom partitioner defined by the programmer. Also, there is an
one-to-one relation between Spark tasks and partitions.

RDDs compose the nodes of a DAG, while the operators are
the edges where transformations occur. Transformations define
how the output data is derived from the input data [24]. There
may be narrow or wide dependencies among RDDs, based on how
elements of a new RDD are derived from elements of a previous
one. Mapping and filtering are examples of transformations with
narrow dependencies, since each new element can be derived from
isolated elements in the previous collection. However, when new
data is produced by reductions or joins applied over existing RDDs,
the original data must be reorganized, and global communication is
necessary. This is called wide dependency, since it requires commu-
nication of data between compute nodes, what is called a shuffle.

2.1. Execution stages

In Spark, chains of operators with narrow dependencies, which
do not require remote communication, can be grouped into stages
of execution by pipelining those operators. During each stage, each
partition of an RDD can be potentially processed in parallel, given
there are no wide dependencies. On the other hand, operators
with wide dependencies mark the frontiers between stages, where
data shuffling occur, and constitute opportunities to change the
application’s degree of data parallelism for the following stage,
since data partitioning may be defined anew for the resulting
RDDs. As we will see throughout this work, such opportunities
represent one of the most effective aspects in the process of tuning
applications. We refer to those points as adaptive points.

To illustrate how execution stages are obtained by the Spark
framework, consider the implementation of Wordcount in Fig. 3.
Its goal is to count the occurrences of each word in a document
partitioned among several compute nodes. First we consider an
initial distributed collection containing lines of this document (line
5), which is transformed into a new collection of individual words
(line 6). Each word is further transformed into a pair (word, 1)
(line 7). The collection of pairs is then aggregated by key using
a summing operation (line 8). Finally, we have a new collection
containing words and their respective number of occurrences in
the document.

The Wordcount code translates into a logical representation of
chained execution stages. In this representation, distributed collec-
tions are RDDs organized according to dependencies produced by
the operations applied: f1atMap, map and reduceByKey. In Fig. 4,
the transformations of the RDD containing 1ines into an RDD of
words, and then an RDD of pairs are grouped together in a single
execution stage, because they were tied by the narrow dependencies
a(flatMap)and b (map). On the other hand, the RDD counts was
left by itself in a second execution stage due to the fact that the
dependency c (reduceByKey) is wide and, therefore, it marks the
existence of an adaptive point.

At job submission time, the analysis of dependencies is done
and the DAG is divided into stages. Those are handled to the
execution engine, which is responsible for scheduling of stages and
coordinating with the application.

3. Performance diagnosis dimensions

Before we can build our tuning tool, we must first understand
the factors affecting parallel applications. To that effect, we identi-
fied a few performance diagnosis dimensions, which will guide our
characterization. Our goal is to reduce the complexity of determin-
ing the source of performance bottlenecks by analyzing executions
from different perspectives, which relate directly to our choice for
dimensions. Those dimensions are described next.
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Fig. 2. RDD of n items distributed over r partitions.

1 object Wordcount {
2  def main(args: Array[Stringl) {
3 val conf = new SparkConf () .setAppName("Word Count")
4 val sc = new SparkContext(conf)
5 val counts = sc.textFile ("/tmp/sample").
6 flatMap (- split " ").
7 map (w => (w,1)).
8 reduceByKey (- + _)

9 println (counts.count + " words")
10 sc.stop()

11}

12 }

Fig. 3. Wordcount algorithm in Spark.

3.1. Data layout

When programs read their raw input, they store it in data
structures that carry additional semantic information. Primitive
and composite types, contiguous arrays and pointers are common
ways for making sense of data in memory. Object-oriented lan-
guages add a layer of abstraction that improve productivity and
modularity and for that they are often used in the majority of data-
parallel frameworks, like Hadoop and Spark. However, the added
abstraction comes with increased overhead in memory usage. Fur-
thermore, those frameworks run on top of the Java Virtual Machine
(JVM), and the JVM’s garbage collector is known to be sensitive to
data memory layout and access patterns [ 19]. For those reasons, it
is worthy to evaluate applications running on top of these systems
from the perspective of their data layout. After all, applications
have some flexibility to choose their trade-off between high-level
abstractions (e.g., objects and complex structures) for clarity and
low level structures (e.g., arrays and primitive types) for fine-
grained performance.

3.2. Task placement

Data-parallel systems divide work by launching many tasks
that run the same code (stage) on different chunks of data. With
such design, scaling to the amount of data is straightforward,
since data partitioning dictates the parallelism. However, given
that applications process gigabytes or even terabytes of data, at
any point of time, hundreds or even thousands of tasks may be
ready to be dispatched for execution in the cluster. It is scheduler’s
role to receive all work requests, pack them into an execution
plan and decide which tasks go to which resources. Furthermore,
the scheduler must address the trade-off between throughput and
allocation quality. In many applications, every task can have a
different computational cost, or process a different amount of data.

Thus, the co-allocation of heterogeneous tasks has the potential for
creating unexpected performance issues. For example, assigning
many heavy tasks to a same subset of resources would increase
the odds of saturation in a single point and could also cause the
under-utilization of others.

3.3. Adequate parallelism

Achieving the right degree of parallelism does not mean just
to tune applications for performance, but also to do so with
just enough resources at each point during execution. In data-
parallel systems, the entity responsible for handling parallelism
is the partitioner, which organizes the data based on a number of
partitions, and it must be able to find that adequate parallelism
for each execution. This is even more critical in new generation
frameworks, where a single submitted program may have many
execution stages separated by wide dependencies. Each stage may
have a different optimal degree of parallelism, and the data shuf-
fling points between stages become opportunities to adjust the
partitioning accordingly. Therefore, elastic behaviors encountered
along an application’s life cycle must be taken into account when
tuning that application. The goal, then, is to find the level of par-
allelism that achieves a good performance, without going beyond
that level.

3.4. Load balancing

Besides the number of partitions, one must worry about the
amount of work assigned to each one of then. For instance, Spark’s
execution model creates invisible barriers at the beginning of each
stage, needed to satisfy data dependencies before proceeding with
execution. Assuming applications execute stages sequentially, any
imbalance in a stage’s tasks leads to resource idleness, which in
turn could create performance bottlenecks. Such load imbalances
might be inherent to the algorithm or due to bad partitioning. In the
first case, it may not be possible to change the application behavior;
however, in the second case the framework may be able to improve
performance by changing the partitioning scheme. In any case, only
a detailed analysis of the execution may determine how to handle
the problem.

4. Selected applications

Big-data applications are often based on data mining/machine
learning algorithms. Because such algorithms may have different
properties, we selected three of them that cover some of the major
execution behaviors in this context. Our goal was to cover common
application patterns, like iterativity and/or regularity, and also
straightforward data analytics routines, i.e., when these charac-
teristics are absent. Thus, we selected the following algorithms:

counts

! Stage IT
(©

[

}

Fig. 4. Wordcount represented as a DAG of stages. Transformations a and b represent mapping operations, so they generate narrow dependencies. Transformation c represents
the reduceByKey operation that executes a global reduction, so it generates a wide dependency.
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Fig. 5. Overview of Pagerank.

(i) PageRank, an iterative, regular algorithm, which executes ba-
sically the same computation on every iteration; (ii) Eclat [25],
an iterative, irregular frequent pattern mining algorithm, where
the amount of computation varies per iteration and (iii) Twidd, a
parallel implementation of FPGrowth [11] that also solves the pat-
tern mining problem, but a non-iterative algorithm with complex
data structures. Other iterative, regular algorithms like PageRank
include KMeans and the training step of Collaborative Filtering with
Alternating Least Squares. Other iterative, irregular algorithms like
Eclat include Pregel [ 18] implementations of Triangle Counting and
Connected Components. Finally, additional applications that follow
a non-iterative pattern include ETL workflows, Sorting and Nutch
Indexing.

# partitions

4.1. PageRank

PageRank is a link analysis algorithm that computes the relative
importance of nodes in a network. It does so by assigning initial
ranks to every node and iteratively updating each value based
on the node’s neighborhood. Initially, the rank of every node is
set to 1.0 and on each iteration, every node divides its own rank
among its neighbors. Thus, a node with rank r and n neighbors
would share % of its own rank with each neighbor. Naturally,
every node receives rank shares from all its neighbors and sums
up those values to build a new rank. The process continues for a
number of iterations or until values converge. Fig. 5 illustrates the
algorithm.

Despite the number of input partitions, PageRank has adaptive
points on every iteration, as we have to (steps 3, 5, etc.) join ranks
and links to produce contributions and (steps 4, 6, etc.) reduce these
contributions per node.

4.2. Eclat

Eclat solves the problem of frequent pattern mining, which is:
given transactions, each one composed by sets of items, and a
support threshold minsupp, find all subsets of items (itemsets) that
occur in more than minsupp transactions. It works with a vertical
database layout for fast candidate counting, intersecting inverted
lists of transactions. We adopted a local counting strategy [20] to
implement Eclat over the RDD abstraction. Fig. 6 illustrates the
algorithm.

The algorithm (1) reads transactions, (2) verticalizes the base,
(3) generates candidates by intersecting itemsets, (4) outputs local
counts, (5) aggregates local counts into global counts and filters
the original set of itemsets, keeping only the frequent ones. It
continues with other rounds of these same steps until no frequent
itemset is found. For the sake of our discussion it is sufficient to
state that the algorithm has one main adaptive point, highlighted
in the figure.
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Fig. 6. Overview of Eclat.
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Table 1
Algorithms and datasets used for characterization.
Application Dataset Size Blocks Details
Twidd/Eclat twitter 7.9 GB 63 # transactions: 233mi, # distinct items: 64mi
PageRank gplus 9.3GB 75 # nodes: 35mi, # edges: 575mi
eSS
! : (2) Local (b) - :
: 4> FPTrees LA :
()
# partitions (1)
o ‘ () f b
: Frequent (f) Final | # partitions (2) | - (d) Merged :
| . - - p-pairs R— |
! itemsets FPTrees | | p-trees ‘
\ o L / \ J
Fig. 7. Overview of Twidd.
4.3. Twidd - |
Ei 300 - | |
Twidd is another approach for frequent pattern mining. An S | ! |
overview of Twidd is shown in Fig. 7. Briefly, the algorithm g 250 - | 1
(1) reads transactions, (2) builds FPTrees over those transactions, E
(3,4) rebalances them in the cluster, (5,6) performs a pre-projection =
of itemsets and finally, (7) searches for the remaining frequent .5 200 -
itemsets. For the sake of our discussion it is sufficient to state that § Twidd
the algorithm has two main adaptive points in its DAG, highlighted 2 150 - = Eclat
in the figure as # partitions(1) and # partitions (2). = | . Lo | |
67 127 257 327 527 1021

5. Characterization

The complexity of piled abstraction levels in data-parallel sys-
tems turns out to be an obstacle for a strictly analytical analysis.
For this reason, we present an experimental evaluation to charac-
terize sources of performance inefficiency based on the dimensions
introduced in Section 3. Our observations here both confirm there
is room for performance improvement and guide us with possible
actions towards that desired outcome.

We ran our experiments in a cluster with 9 machines, each a
quad-core Intel Xeon X3440 with hyperthreading and 8 MB cache,
16 GB RAM, a 1 TB 7200 RPM SATA disk, running 64-bit Linux 3.2.0.
The nodes were connected with Gigabit Ethernet. The cluster was
configured with Spark v1.5.1 and Hadoop/HDFS v2.5.0. We used
two real world datasets in our evaluation: a set of Twitter posts,
containing tweets crawled using the Twitter API, and a Google+
graph representing users (nodes) and friendships (edges) [17]. All
datasets were loaded into HDFS with a replication factor of 2,
which was enough to provide good locality to the tasks considered.
Table 1 summarizes the setup for algorithms and datasets.

5.1. Task placement

Initially we observed the behavior of Twidd and Eclat under
several degrees of parallelism (Fig. 8). In Twidd we varied the
degree of parallelism in the adaptive point # partitions(1); in Eclat
we varied the degree of parallelism in the input (# partitions).

Partitioning in Eclat has the expected effect: there is a sweet
spot that represents the best trade-off for parallelism. On the
other hand, Twidd’s results are uneven. Its run-time results start
behaving similarly to Eclat’s; however, at the range [227, 331] we
note something unexpected: execution time increases with 257
and 327 partitions and then drops again. Also, we observe a high
variation in the results with 257 partitions.

# Partitions

Fig. 8. In some cases finding the right degree of parallelism is not a matter of
increasing/decreasing the number of partitions.

To understand that, we isolated the stage causing the high
variation (the 5th stage, which runs FPGrowth on final reparti-
tioned trees) to observe the duration of its tasks as the application
evolved, and identified the best/worst case scenarios (Figs. 9(a)
and 9(b)). In the best case, execution times stay between 10 and
30 s, mostly, while some times get beyond 200 s in the worst case.
For the worst case we zoomed in on a shorter interval, to show
tasks that had a high increase in run-times (they were 72 of 257
overall). We can see those moments coincide with an increase in
the garbage collection times. Comparing the two scenarios we note
that not even the most costly outliers of the best case came close to
the upper bound caused by those 8 tasks in the worst case (=200 s).
To make things worse, those stragglers were scheduled nearly at
the same time (delta 30 ms), in the same executor.

That shows how irregular applications are specially sensitive
to parallelism and task placement. In Twidd, we identified cases
where co-allocation of heavy tasks on executors running slow due
to GC pauses could bring significant performance degradation to
the overall execution, as just shown. That behavior is tightly cou-
pled with the complexity of data structures employed by Twidd.
In fact, that is the reason why Eclat presents such predictable
behavior w.r.t. varying the degree of parallelism. In conclusion,
data parallel schedulers could benefit of GC-awareness from its
worker nodes.

5.2. Load balancing

We discuss load balancing by looking closely at Twidd’s 4th
and 5th stages (Fig. 7), as we alter data partitioning by varying the
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Fig. 9. Detailed analysis of Twidd’s 5th stage.
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Fig. 10. Behavior of Twidd’s 4th execution stage as we vary #partitions(1). Most of the imbalance is explained by the uneven data reads over a shuffle step. Run-time and

shuffle read correlations: Pearson = 0.94; Spearman = 0.95.
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Fig. 11. Behavior of Twidd’s 5th execution stage as we vary #partitions(1). Most of the imbalance is inherent to the algorithm. Run-time and shuffle read correlations: Pearson

=0.19; Spearman = 0.23.

number or partitions in the input of stage 4 (#partitions(1)), which
also affects stage 5.

Fig. 10 shows additional metrics regarding Twidd’s 4th stage.
The x-axis refers to the number partitions in the 4th stage’s input.
Skewness in running times tends to increase as more partitions
are used. If we observe the amount of data in the shuffle reads
we find a similar behavior, ie., the amount of data each task
reads from the shuffle becomes more skewed as the degree of
parallelism increases. These results suggest that run-time grows
together with the volume of data in the shuffle read. We used
Person and Spearman correlations to get a better understanding
on this behavior [10]. Pearson correlation will allow us to deter-
mine whether the two variables increase or decrease together.
Additionally, Spearman correlation helps us to determine whether
this relationship is likely to be monotonic. Indeed, Pearson and
Spearman correlations between those two dimensions (run-time
and shuffle read) are 0.94 and 0.95 respectively. However, by
looking at the number of records processed per task, we see almost
no outliers, which means that the partitioner is dividing work
equally based on the number of records from the shuffle write

of the previous stage that are assigned to each node. Thus, load
imbalance is coming from the fact that records have different sizes
and, therefore, variable processing costs.

The takeaway is that imbalance cannot always be mitigated
by increasing the number of partitions of a given stage. In such
cases, hash partitioning (which is the default in Spark) cannot
capture and distribute the workload equally; arbitrarily increasing
partitioning could result in anomalous cases [6].

A different result was found in the analysis of Twidd’s 5th stage,
shown in Fig. 11. The running time median cannot be estimated
from other metrics at any degree of parallelism, which means that
tasks have variable processing costs (Fig. 11(a)). At that point we
could not claim this is due to bad partitioning or inherent to the
algorithm. However, by looking at the distribution of tasks’ shuffle
read volumes (Fig. 11(b)) and number of records (Fig. 11(c)) we
conclude that the median better represents those metrics (boxes
are symmetric, except for outliers in the number of records). Thus,
the cause for run-time skewness in the 5th stage is not naive
partitioning, but inherent to the algorithm.
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Fig. 12. Input size progression over iterations.

5.3. Adaptive execution

Many machine learning and graph processing algorithms are
based on iterative and/or converging approaches. When translated
into Spark DAGs, those techniques expose opportunities for re-
execution optimization. Indeed, the partitioning scheme (number
of partitions and data placement method) can be changed in the
beginning of every stage, since data are being reorganized in every
shuffle. In case of iterative algorithms, the logic of one iteration
certainly will be applied to another context later on. By tying
up program'’s logic with the data it consumes/produces, one can
classify groups of stages into:

1. Equal (Pe), i.e., they execute the same function with the
same ratios of inputs/outputs.

2. Similar (Pgy,), i.e., they execute the same function with dif-
ferent ratios of inputs/outputs.

3. Unrelated (P,y,), i.e., share few or no properties.

The approach adopted by PageRank produces the same com-
munication pattern every iteration (Fig. 12(a)): graph nodes share
rank contributions with their neighbors. Therefore, iteration stages
are P,q. One simple way to optimize P, stages, given that we find
the right amount of parallelism for an earlier iteration, is to simply
use that knowledge for later iterations.

On the other hand, there are algorithms that re-execute stage
functions several times, but in different contexts. In those cases,
the problem has the potential for growing/shrinking over time.
Even then, historical information about previous executions could
help the scheduler to optimize upcoming steps by estimating the
desired parallelism. Eclat, for example, generates different con-
texts on each iteration, due to its combinatorial nature. Thus, its
iterations are Ps;y,. In that case, it is erroneous to assume that the
same parallelism employed initially would guarantee the same
gains over time. Thus, we lack criteria to apply to Eclat, for example,
the same approach we used in PageRank. The application should be
able to estimate new configurations based on the common knowl-
edge of re-executions. In this context, the common knowledge is
that we ran the same stage under certain circumstances (inputs
and outputs) and got some cost associated to it. Then, it becomes a
matter of, given another set of inputs and prior knowledge, finding
the proper tuning for this new setting.

The last category (P,,) refers to stages that are completely
unrelated during a single execution; Twidd fits this category. In
that case, the only information that can be leveraged is between
executions, but it can still be advantageous to learn from past
events if jobs are recurrent.

6. The Janus reconfiguration tool

As shown during the characterization, the adjustment of an
application’s parameters, specially those related to partitioning,

30000 -
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[as)] # Partitions
S, 20000 - —75
<
Q 128
‘A 256
5 10000 - —512
g-‘ 1024
S
0 ) " " " " " "
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Iteration
(b) Eclat: input size.
Analyzer 3 Adaptation Helper
Policies Actions
applied as resulting in
Actions 2 Adapted Execution
--= Optional — Required
logapp,n: n-th log for app 4 1

Application

app k

Fig. 13. Janus architecture.

deeply affects its performance. With that in mind, and considering
that performance optimization should be transparent to the user,
we present in this section our reconfiguration tool, Janus. Its main
goal is to facilitate the process of tuning applications. We followed
three guidelines in its design: (1) it should be independent of
versioning and implementation of the targeted execution engine
(Spark); (2) the model created by it should be interpretable, i.e.,
capable of easily exposing points in the program where the ad-
justment is actually taking place; and (3) it should be extensible,
allowing ad-hoc reconfiguration strategies to be implemented and
added by system administrators.

Fig. 13 shows the architecture overview of Janus. The user
application starts with or without log information from a previous
execution (0). We leverage the standard log information provided
by the Spark framework, which is based on run-time events and
associated metrics. If no log information is provided, the applica-
tion executes as usual and registers the first log, which can serve
as a feedback for future executions. Next, the system internally
instantiates an Adaptation Helper (Section 6.2) (1), which then
initializes and asks the Analyzer (Section 6.1) to parse the log and
make some decisions based on the observed statistics (2). Those
decisions are returned to the helper as actions to be applied during
the current execution (3). The helper then translates those actions
into properly partitioned RDDs back to the application (4). Finally,
the new log is added to the repository.

6.1. Analyzer

The purpose of the Analyzer is to receive execution logs from the
Adaptation Helper, identify points for adjustment in the application,
apply the configured policies based on the data collected and,
finally, deliver a set of actions back to the Adaptation Helper. Actions
in that context indicate reconfigurations in application’s configu-
ration and partitioning over time. The analyzer also captures the
communication patterns of the application, so it can identify if the
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application is regular and/or iterative, and use that information in
the decision process. The current version of Janus supports five
types of action:

e UConfAction: changes a global configuration;

e UNPAction: updates the number of partitions at an adap-
tive point;

e UPAction: updates the partitioner of at an adaptive point;

e WarnAction: adds a warning to the application log as a
mechanism to document cases where some inefficiency was
detected but no automatic action to mitigate the problem
is known;

e NoAction: indicates that no action should be taken.

For instance, UPAction can request the change of the parti-
tioner from hashPartitioner to rangePartitioner. On the other hand,
WarnAction can indicate to the user some problem that requires
human intervention, like identifying the source of imbalance (Sec-
tion 5.2). Also, with an UConfAction, for example, we are able to
change the default serialization of RDDs by setting a global configu-
ration (spark.serializer), which affects the whole application.

The plan of action depends on the set of policies employed by
the Analyzer. We model policies with a pre-defined signature: they
receive information about the environment and/or adaptive point,
and return necessarily an action (or NoAction). More specifically,
we work with two types of policies: (i) application policy, that
considers the whole execution and updates global configurations
through UConfAction, and (ii) partitioning policy, that works
over an adaptive point through UNPAction/UPAction and re-
ceives, besides environment information, parameters and metrics
regarding that specific execution point.

6.2. Adaptation Helper

The Adaptation Helper couples user applications with their re-
spective decision makers (the Analyzer). Its main function is to
translate actions delivered by the Analyzer into real modifications
in the current execution, transparently to the user. Section 6.3
describes the Janus API. Basically, the user can feed it with previous
execution information, pre-adapt and/or include new policies and
call special versions of Spark operators.

The user interacts with the Adaptation Helper through overwrit-
ten Spark operators that are aware of adaptive points. Fortunately,
the operators that represent adaptive points are well defined in
the system (reduceByKey, textFile, join, etc.), i.e., any operator that
allows setting the number of partitions and/or partitioner. Our sys-
tem leverages Scala implicits to redefine those special operators.
Thus, the only requirement for using them is to explicitly import
their definitions (AdaptableFunctions).

The Adaptation Helper can be instantiated (atomically) by one
of two events: the first call to any overwritten operator is being
called for the first time, or a call to preAdapt to include cus-
tom policies, for example. The Adaptation Helper also triggers the
Analyzer initialization and execution. At that moment, the helper
potentially has all actions delivered by the analyzer associated with
their respective adaptive points. Its execution cost is linear with the
number of tasks, basically the log parsing.

Given that actions are available, every time the user code exe-
cutes some of those overwritten operators, the system verifies if
there is an action to be applied at the current adaptive point. If
that is the case, the new RDD is created considering the semantic of
the action, like update the number of partitions or the partitioner.
Otherwise, the execution continues with the default behavior, so
our solution does not break existing implementations.

Finally, we had to make two design decisions: (1) how logs are
forwarded to the Analyzer, and (2) how adaptive points are distin-
guished from each other. For the first decision we require the user

to inform the log path of a previous execution by setting the config-
uration parameter spark.adaptive.logpath in SparkConf. For
the second decision we consider with two alternatives. For most
of the operators, we support an extra parameter that identifies the
adaptive point. If no identifier is provided, the system considers
a default name comprising the operator and the line at the user
code where it was called. We plan to include automatic tracking of
applications and logs in the future.

6.3. Janus API

The Janus interface incorporates functionalities from both An-
alyzer and Adaptation Helper. Fig. 14 describes that API. In sum-
mary, the user can feed the framework with a log of a previous
execution (Log feedback), pre-adapt the application and/or include
new custom policies (Initialization), call RDD operators aware of
adaptive points (Overwritten operators) and implement new poli-
cies for a performance bottleneck or in accordance to domain
specific requirements (Policy creation). In the next sections we
describe the basic structure of a program (Section 6.3.1), the API
model (Section 6.3.2) and the procedure to create new policies and
add them to the framework (Section 6.3.3). Finally, Section 6.3.4
presents the sample policies that will be used in our experiments.

6.3.1. Basic structure of a program

To illustrate the use of Janus, Fig. 15 shows a WordCount ap-
plication in Spark that uses it. The bold parts highlight differences
in comparison to a standard implementation. We (a) import the
special functions (line 1); (b) set the feedback log of a previous
execution in the SparkConf (line 5); (c) pre-adapt before execution
without custom policies (line 7); and (d) explicitly choose an adap-
tive name for the reduce phase (line 10).

From all of these changes only (a) and (b) are mandatory. In
fact, the user could choose to not pre-adapt its application at line 7
and then that would be done at the time of the reduceByKey call.
Furthermore, as discussed, the system provides a default adaptive
name for known operators, like the one used for reduction in this
example. Thus, setting “ap-counting” at line 10 is optional.

6.3.2. Janus model

The interaction between the user and Janus happens in two
levels. At first, the user may be interested in using only the basic
functionalities; for that, he just has to adjust the application to
make use of the reconfiguration framework (Section 6.3.1). In a
second level, the user may want to extend the tool and implement
a custom policy for his applications; in that case, he must master
the knowledge about how policies relate to the statistics present
in logs of previous executions. With that in mind, we created a
representation for execution logs (Logging Model) and other to
represent types of policies and their interfaces for extension (Policy
Model). Fig. 16 illustrates the details of the classes used in each
model and relations between them.

In general, the goal of the Logging Model is to deliver informa-
tions and statistics of the whole application to the Policy Model,
referred as its environment (Environment), or concerning a specific
execution point, referred as an aggregate of stages and the RDD at
the respective adaptive point (AdaptivePointStats).

The environment aggregates the specific configurations
regarding the virtual machine (Java Virtual Machine) being
used (systemProperties), Spark configurations (spark
Properties), available resources, like cores and memory of ex-
ecutors (executors), and all stages observed during the exe-
cution. Stage represents an aggregate of tasks (Task), which in
turn contain the metrics extracted from the execution logs. Each
AdaptivePointStats contains the statistics of every stage that par-
ticipates in an adaptive point. The RDD labels an adaptive point

https://doi.org/10.1016/j.jpdc.2018.02.030.
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Log feedback:
Initialization:
Overwritten operators:

conf.set ("spark.adaptive.logpath", logapp,n)

preAdapt(sc, p1, p2, ...)

textFile, reduceByKey, aggregateByKey, join, partitionBy
with an aditional parameter ap representing an adaptive point

Policy creation: MyPolicy extends ApplicationPolicy

MyPolicy extends

PartitioningPolicy

Fig. 14. Janus APL

1 import br.ufmg.cs.systems.sparktuner.rdd.AdaptableFunctions._

2 object Wordcount {

3 def main(args: Array[Stringl]) {

4 val conf = new SparkConf () .setAppName("Word Count").
5 set ("spark.adaptive.logpath", "/tmp/logi")
6 preAdapt (conf)

7 val sc = new SparkContext(conf)

8 val counts = sc.textFile ("/tmp/sample").

9 flatMap (- split " ").map (w => (w,1)).

10 reduceByKey (- + _, "ap-counting")

11 println (counts.count + " words")

12 sc.stop()

13}

14 }

Fig. 15. Adaptable Wordcount.
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Fig. 16. Janus Reconfiguration Model.

with its name, the operator that generated it and the code line
of its instantiation. The user can, alternatively, choose a name
for the adaptive point, avoiding any dependency on code line
numbers. AdaptivePointStats can receive several stages as statistics
because the execution model allows it: due to the pipelining of
narrow dependencies and the propagation of the same partitioning
strategy, actions in the user program may force the computation
of each RDD which is part of that pipeline; that can potentially
generate more than one stage per adaptive point.

We identify two categories in the Policy Model: (1) Application-
Policy, which receives global information about the environment
and applies reconfiguration actions before the start of the next
execution; and (2) PartitioningPolicy, which can read global con-
figurations about the environment, but also adjust the partitioning
of specific adaptive points. In the next section we provide details
about the implications of this model for the extension of policies.

6.3.3. Reconfiguration policies

To create a new reconfiguration policy, the user must extend
one of the two types of policies described in Section 6.3.2 (Applica-
tionPolicy or Partitioning Policy) and then, include the new policy
in the preAdapt call, before SparkContext’s instantiation. Sev-
eral policies can be included at once: preAdapt(conf, p1, pa2, - - .),
where p; is a Scala object that extends one type of policy.

The interface for extending policies is presented in Fig. 17.
In order to create an application policy, the user must define an
Scala object that extends ApplicationPolicy and implements
the function beforeExec (lines 15-17). Alternatively, to create a
partitioning policy the user must define an object that extends Par-
titioningPolicy and implements the functions beforeExec
(if some preprocessing is necessary) and adapt (lines 19-22).

Fig. 18 shows the WordCount program modified to include an
additional policy, named LocalityPolicy; the highlighted lines
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Action = {
application’s environment (env) and

1 import br.ufmg.cs.systems.sparktuner.._

2 import br.ufmg.cs.systems.sparktuner.model._

3

4 /* Application Policy */

5 object MyApplicationPolicy extends ApplicationPolicy {

6

7 def beforeExec(env: Environment): Action = {

8 // return an action based on the application’s environment
o }

10 }

11

12 /* Partitioning Policy */

13 object MyPartitioningPolicy extends PartitioningPolicy {
14

15  def beforeExec(env: Environment): Action = {

16 // return an action based on the application’s environment
17}

18

19 def adapt(env: Environment, stats: AdaptivePointStats):
20 // return an action based on the

21 // specific statistics of the adaptive point (stats)
22}

23 }

Fig. 17. API for creating custom application policies or partitioning policies.

1 import br.ufmg.cs.systems.sparktuner.rdd.AdaptableFunctions._
2 object Wordcount {

3 def main(args: Array[Stringl) {

4 val conf = new SparkConf().setAppName("WordCount").
5 set ("spark.adaptive.logpath", "/tmp/logl")
6 preAdapt (conf, LocalityPolicy)

7 val sc = new SparkContext(conf)

8 val counts = sc.textFile ("/tmp/sample").

9 flatMap (- split " ").map (w => (w,1)).

10 reduceByKey (_ + _, "ap-counting")

11 println (counts.count + " words")

12 sc.stop()

13 }

14 }

Fig. 18. Adding an application policy to Wordcount.

indicate the differences to the previous version of the program
(Fig. 15), when only the default policies were used. Next we de-
scribe the implementation of that custom policy.

The LocalityPolicy is an implementation of the simplified
theoretical analysis of the Delay Scheduling [23], which aims at
increasing the data locality of parallel tasks. Because the gain in
executing tasks that have their input local is likely to be more
efficient than tasks that fetch input remotely, every time one task
is ready to be scheduled but there are no available cores on any
machine that has that task’s input locally, the scheduler delays the
decision of that task assignment by a certain time. The intuition
behind the strategy is that the probability of a core containing this
task’s data locally will increase over time, which in turn increases
the odds of scheduling that task with local input. The challenge
here, and also the motivation for a reconfiguration policy, is how
long to delay the task assignment. Specifically, if we wait too much,
the delay may become larger than the task’s execution time itself;
if we wait too little, the delay may be insufficient for a core with
local data to appear.

Because our goal is to find an optimal delay for the application,
the implementation of LocalityPolicy requires the extension of Ap-
plicationPolicy and the implementation of the function be-
foreExec (Fig. 17, lines 4-10). In particular, the function receives
the environment information collected from a previous execution
and must return an action that affects the whole application. Then,
in the context of a locality policy, we are actually interested in an

action UConfAction, since with it we will be able to update the
configuration spark.locality.wait, which controls the sched-
uler’s delay parameter in Spark. The function body must estimate
the ideal delay in order to guarantee a minimal proportion of local
tasks. That proportion serves as a parameter for the policy. For
example, the user may want to find the optimal delay to achieve at
least 90% of local tasks. We can further extrapolate that procedure
for each stage of the application and choose the greater value as
the final delay, in order to cover all stages. The implementation
of that policy is shown in Fig. 19. Finally, a similar procedure
can be applied to develop partitioning policies, with an additional
implementation of the function adapt, which will take care of
adaptive points in the applications.

6.3.4. Sample policies

As a proof of concept, we developed partitioning policies that
handle some of the bottlenecks discussed in Section 5. Here we
provide the pseudo-code for each strategy; an actual implemen-
tation would implement the algorithms as the adapt function of
a PartitioningPolicy (Section 6.3.3). The policies presented next are
not extensive, but are sufficient to demonstrate Janus’s applicabil-
ity.

Empty Tasks (ET, Algorithm 1). If there are tasks that process no
data, we remove them from the number of partitions. That may
lead to an update to the number of partitions at the adaptive point
(UNPAction).

Algorithm 1 Empty Tasks

1: Function: OPT-EMPTY-TASKS( rdd, stages )

2: repr <— FILTER(Stages, "most recent")

3 numEmptyTasks <— FILTER(repr.tasks, task.input == 0).size

4 if numEmptyTasks > O then

5: return UNPACTION(rdd.name, repr .tasks.size — numEmptyTasks)
6 else

7 return NOACTION(rdd.name)

Memory/Disk Spill (SP, Algorithm 2). If the logs indicate a task has
to perform data spill (save data for later processing due to space
limitations), we try to reduce the load of each task by a factor of
how much spill needed to be done in order to shuffle write the
data to next stage. The potential result is an action that increases
the number of partitions (UNPAction).
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1 object LocalityPolicy extends ApplicationPolicy {

2 private val replFactor: Int = 3

3 private val localityTarget: Double = 0.9

4 private def ln(n: Double): Double = {

5 scala.math.log(n) / scala.math.log(scala.math.E)

6}

7 private def stageDelay(numExecutors: Int, coresPerExecutor: Int,

8 stage: Stage): Double = {

9 val taskRunTimes = stage.taskRunTimes

10 val avgTaskLength = (taskRunTimes.sum / taskRunTimes.size.toDouble)
11 val minSchedDelay = - (numExecutors / replFactor) *

12 In( (1 - localityTarget) / (1 + (1 - localityTarget)) )
13 (minSchedDelay / coresPerExecutor) * avgTaskLength

14}

15 def beforeExec(env: Environment): Action = {

16 val numExecutors: Int = env.executors.size

17 val coresPerExecutor: Int = (env.executors.map (_.totalCores).sum /
18 numExecutors) .toInt

19 val schedDelay: Double = env.stages.map (

20 stage => stageDelay(numExecutors, coresPerExecutor, stage)).max
21 UConfAction("spark.locality.wait", s"${schedDelay/1000}s")

22}

23 }

Fig. 19. Application policy for Delay Scheduling.

Algorithm 2 Memory/Disk Spill

Algorithm 4 Task Imbalance

1: Function: opT-sPILL( rdd, stages )
2 repr < FILTER(Stages, "most recent")

3 bytesSpilled < repr.bytesSpilled

4: shuffleWriteBytes <— repr.shuffleWriteBytes

5: if shuffleWriteBytes > 0 then

6: factor < %

7 if factor > 0 then

8 numPartitions <— repr.numTasks + [factor x repr.numTasks]
9: return UNPACTION(rdd.name, numPartitions)

10: else

11: return NOACTION(rdd.name)
12: else
13: return NOACTION(rdd.name)

Garbage Collection (GC, Algorithm 3). In this case we first use the
concept of skewness to determine whether garbage collection is an
issue or not. If this is the case then we split each task proportionally
to the median GC overhead observed. We refer to GC overhead as
the fraction of task’s run-time in which its executor was collecting
garbage. The result is also an action that updates the number of
partitions (UNPAction).

Algorithm 3 Garbage Collection

1: Function: opT-Gc( rdd, stages )
repr <— FILTER(Stages, "most recent")
gcOverheads <« repr.taskGcOverheads
sk < SKEWNEss(gcOverheads)
if HIGHSKEWNESS(sk) then
target < MEDIAN(gcOverheads)
normalized < NORMALIZE(gcOverheads, target)
numPartitions < sum(normalized)
return UNPACTION(rdd.name, numPartitions)
else
return NOACTION(rdd.name)

_-—
RPN AWN

Task Imbalance (TI, Algorithm 4). This action automates our
methodology of the load balancing analysis from Section 5.2. We
consider sources of imbalance being: (a) inherent; (b) due to key
distribution; or (c) due to variable costs for the same key. Due
to limitations of the environment, we are unable to adapt and
handle some kinds of imbalance automatically in most situations.
Most cases of imbalance output warnings (WarnAction) except
for imbalance due to key distribution, where a rangePartitioner
may be a solution (UPAction).

1: Function: oPT-TASK-IMBALANCE( rdd, stages )

2 repr < FILTER(Stages, "most recent")

3 runTimes < repr.taskRunTimes

4: sk <— SKEWNESS(runTimes)

5: if not HIGHSKEWNESS(sk) then

6: return NOACTION(rdd.name)

7 corr1 <— CORRELATION(runTimes, repr.taskShuffleReadBytes)
8 corr2 <— CORRELATION(runTimes, repr.taskShuffleReadRecords)
9 HighCorr1 < HIGHCORRELATION(corr1)

10: HighCorr2 <— HIGHCORRELATION(corT2)

11: if HighCorr1 and HighCorr2 then

12: return UPACTION(rdd.name, rangePartitioner)
13: else if not HighCorr1 and not HighCorr2 then
14: return WARNACTION(rdd.name, Inherent)

15: else

16: return WARNACTION(rdd.name, VariableCost)

7. Evaluation

Our environment for evaluation is the same used for characteri-
zation (Section 5). Here we evaluate Janus considering the selected
applications and the issues found. The following performance mea-
surements include the time spent by the Analyzer to parse and
decide actions for the applications, in case of experiments using
the tool. However, in all settings, we observed no more than 3 s for
that overhead in our implementation of the Analyzer. Section 7.1
presents the results for PageRank, which represents iterative, regu-
lar applications. Section 7.2 presents the results for Eclat, an itera-
tive, irregular application. Section 7.3 discusses Twidd’s executions,
representing non-iterative applications. Finally Section 7.4 presents
an additional use-case with Collaborative Filtering (Alternating
Least Squares) [26] executions, representing applications com-
posed by several communication patterns combined.

7.1. PageRank

We evaluated PageRank under several degrees of parallelism
for the input partitions (Fig. 20). Initially, we ran the algorithm
with no explicit reconfiguration. We refer to that as Conservative
execution because the number of input partitions, derived from the
number of blocks in HDFS, is used naively by Spark as the default
degree of parallelism for the reductions in every iteration. By doing
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Fig. 20. Optimizing P, i.e., stages that repeat with the same communication
pattern. Adaptive re-executions (iterations) can leverage information about the
previous degrees of parallelism. Numbers inside bars indicate how many partitions
some iteration of Janus has decided for the reduce phase.

a careful examination on the performance logs provided by Spark,
we noticed a high garbage collection activity in the configurations
with less than 1024 partitions, i.e., the memory available for each
task was not sufficient. As expected, such overhead severely de-
graded PageRank’s performance. Then, after identifying that 1024
partitions would speedup the reductions, we re-ran the tests with
different degrees of parallelism for the input partitions, but lim-
iting the parallelism to 1024 partitions during each iteration. We
refer to that as Adaptive.Manual because we change the number of
partitions of the reduce phase regardless of the input but we do so
by manually setting that parameter in the code. The third category
is the one obtained by our tool (Adaptive.Janus), in which we used
the logs from Conservative approach as input.

Adaptive.Manual improved overall performance, obtaining
speedups of 2.2x, 1.7x and 2.3x in the first three configura-
tions, considering the observations regarding adaptive execution
made in Section 5.3. The results with 1024 partitions are exactly
the same, since it was our baseline. Finally, we observe no gain
when the number of input partitions exceeds the cost of reduc-
tion (with 2048 partitions). More important, the results using
Adaptive.Janus were able to keep up with the best case scenario
of Adaptive.Manual, which shows that the policies created were
effective, with the bonus of automatic adaptation.

The execution with 256 input partitions shows an interesting
fact related to the tool’s operation. In its current implementation,
Janus applies only one action, from one policy per adaptive point
each time it runs. In some cases, the first reconfiguration may cause
a second bottleneck to appear. The resulting time for 256 input par-
titions when we ran Adaptive,Janus once with the log information
from the Conservative execution was worse than the conservative
execution in a first round (notice the number or partitions chosen,
611, was close to 512, and so the performance was close to that
conservative case). The action recommended by the Analyzer was
to increase the number of partitions based on a high observed spill,
i.e., an UNPAction that increased the number of partitions based
on the policy SP (Section 6.1). That solved the spill problem, but the
new execution suffered from another bottleneck due to garbage
collection overhead. A second round of execution using Janus with
the log of the first round was able to achieve the desired optimal
performance. In that case the action returned by the Analyzer was
to increase the number of partitions again (UNPAction) but w.r.t.
the policy GC from Section 6.1. The bar 4.Adaptive.Janus.Iteration.2
shows that last result. In other cases, like with 128 and 512 input
partitions, the heuristics lead directly to a decision closer to the
optimal solution.
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3.Adaptive.Janus
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Fig. 21. Optimizing Py, i.e., stages that are repeated with different inputs. The
degree of parallelism must adapt to the elasticity of the application. Percentages
inside bars represent reductions in the number of launched tasks relative to the
Conservative approach.

7.2. Eclat

We evaluate Eclat varying the degree of parallelism of adaptive
point in Fig. 6. Fig. 21 shows our results for three scenarios. As
before, Conservative refers to maintaining the number of input
and reduce partitions the same on every iteration, Adaptive.Manual
considers a heuristic based on the specific behavior of the algo-
rithm, and Adaptive.Janus shows the results for Janus using Con-
servative logs as input.

To build Adaptive.Manual, we considered a heuristic to follow
the elasticity of Eclat’s problem size (Fig. 12(b)). We observe the
selectivity factor of the first operator before the shuffle took place,
i.e., a factor of selec = sm’}}'{e’%. This factor is used to tune the par-
allelism for the reduction in the first iteration. We set the number
of reducer partitions to nparts = max( (WL totalCores),
setting the number of cores as a low limit. The remaining iterations
are tuned proportionally to shuffleWrite with nparts of the first
iteration. The policy applied by the Analyzer in Adaptive.Janus is the
one related to empty tasks, considering the elastic behavior of the
application. It makes no assumptions about the algorithm.

Both adaptive solutions are effective on fixing under- and over-
estimations in the number of partitions (75 and 1024 input par-
titions, respectively). The gain is small in intermediary values, as
they approach the optimal parallelism, when candidate generation
(map phase) overcomes the global counting (reduce phase). Note
that because we are comparing two similar heuristics regarding
the adaptive execution, some results tend to favor the manual
approach, e.g., in the experiments with 128 partitions. However,
every result obtained by our tool (Adaptive,Janus) outperforms or
is at least statistically not different from the manual adaptation,
with the advantage of being an automatic approach.

Adaptive execution also has the capacity to reduce the number
of tasks launched in comparison to the conservative approach,
therefore reducing the total amount of resources used during each
step. We indicate that gain as the percentage of reduction in the
tasks launched for the reduction stages compared to the conserva-
tive approach (Fig. 22). The number of tasks launched is reduced
by at least 78.4% for Adaptive.Manual and by at least 73.6% for
Adaptive.Janus, even in cases where run-time gains are modest.

7.3. Twidd

Fig. 23 shows the warning messages generated by Janus when
we execute Twidd with the log discussed in Section 5.2. It captured
the same sources of imbalance discovered in that analysis, ie.,
stage 4, where muTrees are merged, suffers from imbalance due to
variable costs for the same key, and stage 5, where rhoTrees are

https://doi.org/10.1016/j.jpdc.2018.02.030.
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Fig. 22. Percentages indicate a reduction in the resource utilization of the adaptive
approaches against the conservative one (1.Conservative), shown in Fig. 21.

merged, suffers from imbalance inherent to the application. Since
those issues cannot be handled easily by the current version of our
tool, the actions are merely warnings, indicating user intervention
is necessary.

7.4. Collaborative filtering with ALS

We also evaluated Janus in a broader scenario considering a
typical machine learning workflow. More specifically we ran a
Collaborative Filtering (ALS) [26] application that comprises train-
ing and testing. During the training phase the main behavior is
iterative and regular, however during the test phase we observe
some non-iterative communication patterns. Therefore, our goal
is to evaluate Janus under a heterogeneous execution flow, po-
tentially composed by several communication patterns altogether.
The dataset used in this experiment is a deduplicated version
of the Amazon Reviews Dataset [12], which contains 82.83 mil-
lion reviews of 6.6 million users on 2.4 million products. The
results of varying the number of input partitions are shown in
Fig. 24.

Note that we see significant performance improvement in the
first three configurations. Janus fixed underestimations in the
number of partitions (72) and introduced small adjustments in an
optimal partitioning (144). The third configuration (216) required
two Janus iterations to exhibit improvements because we reached
a high-skewed load distribution with the actions applied in the first
iteration, similarly to our discussion in Section 7.1. Finally, in the
fourth configuration, we did not get significant gains as the cost of
spawning more tasks starts to overcome the cost of processing.

8. Related work

Several works propose job optimization for data-parallel frame-
works [1,3,15]. Those systems work with structured data (SQL-like)
or domain-specific languages (e.g. for machine learning), where
the knowledge about data organization exposes more opportu-
nities for optimization. Our work considers general purpose data
processing, where there are no assumptions about the input.

Optimization of recurring jobs can be made by creating a statis-
tics repository of applications executed in the cluster as done in
Scope [4]. The approach in that case aims at future re-executions
and assumes that similar jobs process data with similar properties.
Thus, it is orthogonal to our discussion.

WARN OptHelper:
WARN OptHelper:

1.Conservative
l 2.Adaptive.Janus
3.Adaptive.Janus.Iteration.2
I 4.Adaptive.Janus.Iteration.3

I

(=1

(=]
'

200 -

ET (seconds)

1 1
72 144 216 288
# Input Partitions

Fig. 24. Optimizing heterogeneous applications, i.e., composed by several commu-
nication patterns combined. Janus isolates points in the application with different
communication patterns and applies the policies according to that specific behavior.

Automatic reconfiguration of recurring jobs is another option
in performance optimization. Starfish [13] is able to construct
job profiles based on previous executions, exploring the space of
Hadoop internal configurations (using a What-If engine) to find
the best setup for later jobs. However, it optimizes only static
parameters that must be set prior to the application submission
and cannot be changed after that. Therefore, it is also orthogonal
to our approach. Furthermore, because our framework is based on
configurable policies, it is possible to implement and quickly try
new custom partitioning strategies [2,9] and expand the applica-
bility of our tool.

Adaptive query execution is an ongoing issue in the Spark
project that proposes improvements to the run-time engine [22].
The main idea is to postpone stage submissions to allow parti-
tioning focused on statistics collected in earlier stages. That new
feature, which aims the optimization in general cases, could benefit
from extra knowledge similar to that provided by Janus.

Most data-parallel frameworks use garbage-collected lan-
guages and that is the case of Spark with the Java Virtual Machine
(JVM). Several algorithms for garbage collection suffer from long
GC pauses and memory overheads. Broom [8] uses a region-based
memory management that co-locates objects having the same
collection footprints, which avoids large heap scans every time a
full collection occur. Holistic approaches [16] plan to coordinate
collections in a distributed environment. The latter could improve
our scheduler’s decisions by providing worker state awareness.

Memory management in Spark is moving towards a manual,
optimized memory layout [21], which would remove garbage col-
lection for critical steps of execution w.r.t. memory, like aggre-
gations. Despite that, optimizers could still benefit from executor
load feedback, apart from this knowledge coming from virtual
machines or manual instrumentation.

This paper extends results previously published [6,7]: it pro-
vides a detailed description of the tool implementation, not pre-
sented before, as well as some new analysis of the evaluation
results.

9. Conclusion
Data-parallel frameworks simplify the task of data scientists,

allowing them to write parallel applications using high-level ab-
stractions. However, those frameworks still face some challenges,

WarnAction(muTrees, VariableCost) (task-imbalance,257)
WarnAction(rhoTrees, Inherent) (task-imbalance,257)

Fig. 23. Warnings produced by Janus for a given execution of Twidd.
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such as to create self tuning solutions in scenarios where the user
has total freedom to write any code.

We characterized sources of inefficiency in three representa-
tive applications, showing the impact of partitioning to applica-
tions performance and also that, in order to handle imbalance,
we must identify its causes, among several potential ones. Then
we presented the concept of adaptive execution and how the
communication pattern of the applications can be used to opti-
mize their performance. Finally, with that background, we built
Janus, a tool for automatic reconfiguration of recurrent applica-
tions. Our solution is configurable, compatible with any Spark
core application, and it allows pluggable policies for bottleneck
mitigation. Janus receives as input logs of previous executions
and automatically decides new partitioning parameters for the
adaptive points it identifies. We evaluated our tool against both
a conservative and an adaptive/manual approach. We were able to
observe consistent improvements w.r.t. the conservative approach
and fairly equivalent results when compared to manual adaptation.
We believe that our work is a step towards self-tuning data parallel
systems.
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