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Abstract—Given the large amount of data from different
sources that have become available to researchers in multiple
fields, Data Science has emerged as a new paradigm for exploring
and getting value from that data. In that context, new parallel
processing environments with abstract programming interfaces,
like Spark, were proposed to try to simplify the development
of distributed programs. Although such solutions have become
widely used, achieving the best performance with them is still not
always straight-forward, despite the multiple run-time strategies
they use. In this work we analyze some of the causes of perfor-
mance degradation in such systems and, based on that analysis,
we propose a tool to improve performance by dynamically
adjusting data partitioning and parallelism degree in recurrent
applications based on previous executions. Our results applying
that methodology show consistent reductions in execution time
for the applications considered, with gains of up to 50%.

I. INTRODUCTION

The evolution of areas like data mining, machine learning

and data analytics, with increased availability of data sources

has led to the rise of Data Science as a new way of processing

and extracting value from large amounts of data. One strategy

that has become popular to process such data is the use

of data-parallel frameworks, like Hadoop and Spark. They

provide data scientists, or domain experts, with tools that offer

high-level abstractions to express complex data processing

algorithms in a way that can benefit from a large number

or machines, but without requiring them to express nor to

handle low-level parallelism tasks. Based on the algorithm

description provided by the user in that high-level abstraction,

it is the task of the programming environment to find the best

configuration to maximize execution performance with good

resource usage. In looking for the best performance, those

frameworks face three challenges, which reflect dimensions

of performance diagnosis:

1) Data partitioning: parallel applications read from dis-

tributed data sources (e.g., HDFS) and often use the number

of partitions as a first reference for the degree of parallelism to

be used. Finding optimal partitioning can be painful because

different programs can have different computational costs for

the same input. The fact users may inject their own code

to be executed by framework operators make costs even

more unpredictable. Thus data partitioning is the task of

achieving adequate parallelism while taking into account data

distribution and properties, like its in-memory layout [1].

2) Load balancing: from the abstract programs provided by

users, frameworks like Hadoop and Spark break computational

tasks into stages, delimited by points where synchronization

must occur to satisfy data dependencies. Those frameworks

try to employ parallelism within every stage, but not among

dependent stages. Unfortunately, such design can lead to load

imbalance and skewness: even though resources may become

idle in some computing nodes, the framework must wait

for all the tasks in that stage to complete before it can

proceed with computation. This is a challenge because little

knowledge is available before execution about data distribution

and processing costs.

3) Execution model flexibility: In many cases, a program

may require changes of plans and reconfiguration to achieve

its best performance over time. An execution model must be

able to cope with such dynamic needs. While during a first

part an algorithm may handle few data points and can be

initially scheduled to execute in a few machines, later that

dataset may expand to represent a larger application scenario.

The system should be able to detect that and reconfigure itself

to use more compute nodes at that point. In frameworks like

Spark, that may be hard to accomplish, given that such changes

may require changes in the way data is partitioned and may

require the re-evaluation of all the execution design [2].

Therefore, considering that data science models and algo-

rithms are irregular and intensive in terms of both computation

and communication, performance diagnosis of parallel appli-

cations in environments such as Spark is quite a challenge.

Finding the right partition for the data at each stage of

execution, balancing load during execution and adjusting the

environment as application behavior changes are all difficult

tasks to be performed by the execution framework.

In this work we present a characterization of the kind of

workload we are dealing with through three different massive

data parallel applications that we believe represent most of

the algorithm patterns found in the area. Next we describe

our tool for adaptive reconfiguration of recurrent applications

and evaluate our solution against conservative and manual

partitioning approaches. The results show consistent gains in

performance and the tool flexibility for extending policies

enhances its applicability in other scenarios.

II. DATA PARALLEL PROCESSING EXECUTION MODEL

It is usually the case that data parallel frameworks express

their computation in terms of the computation applied to data

elements. To achieve parallelism, data parallel frameworks

partition data and distribute partitions among compute nodes.

Programs are then expressed in terms of computation applied
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to data elements. In fact, one can think of a parallel program

as a data flow, composed by operators, inputs and outputs.

The way operators are combined to build an algorithm,

with the output of one operator serving as input to some

other operator, can be represented as a directed acyclic graph

(DAG). The exact meaning of each node and edge may vary

from system to system, but they always express the flow of

data and the transformations applied to them. Whichever the

representation, DAGs make clear the dependencies along a

program execution and are essential to identify when tasks

may be parallelized and when synchronization is necessary.

Given is wide acceptance in current big-data scenarios, in

this work we consider Spark in our analysis. In Spark, data are

stored and processed as collections called Resilient Distributed

Datasets (RDDs), which are the edges of the DAG, and the

operators are the nodes where transformations occur. Given the

type of transformation, it defines how the output data depends

on the input data [3]. Transformations may have narrow or

wide dependencies, depending on how elements of an new

RDD are derived from elements of a previous one. Mapping

and filtering are examples of transformations with narrow
dependencies, since new elements are derived from isolated

elements in the previous collection. In that case, operators

do not require data shuffling, i.e. network communication.

When new data is produced by reductions of joins applied

over existing RDDs, data must be reorganized, and global

communication is necessary. This is called a wide dependency.

In Spark, chains of operators with narrow dependencies can be

grouped into stages of execution by pipelining operators that

do not require remote communication. Furthermore, operators

with wide dependencies mark the frontier between stages

and constitute an opportunity for changing the application

parallelism, since data partitioning may be defined anew for

the resulting RDDs. We refer to these points as adaptive
points. The identified stages are handled to the execution

engine at the time of job submission, and the engine is

responsible for resource allocation, scheduling of stages and

coordination within the application.

In that case, resource allocation refers to the process of

requesting and allocating executor nodes on behalf of the

application. The executors have their share of cluster cores and

memory for task execution. In essence, stages are scheduled

according to wide dependencies and are composed by several

tasks that execute the same set of commands.

III. SELECTED APPLICATIONS

Our workload for evaluation is composed by three algo-

rithms: (i) Twidd, a parallel implementation of FPGrowth [4],

a non-iterative algorithm with complex data structures; (ii)
Eclat [5], another frequent pattern mining algorithm, like

Twidd, but an iterative, irregular one, where the amount of

computation varies per iteration; (iii) PageRank, an iterative,
regular algorithm, which executes basically the same com-

putation on every iteration. Our goal was to cover common

application patterns present in machine learning algorithms,
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(c) PageRank

Fig. 1. Selected applications

like iterativity and/or regularity, and also straightforward data

analytics routines, i.e., when these characteristics are absent.

A. Twidd

Twidd is an implementation of FPGrowth over RDDs. It

solves the problem of frequent pattern mining, which is: given

transactions, each one composed by sets of items, and a

support threshold minsupp, find all subsets of items (itemsets)

that occur in more than minsupp transactions.

An overview of Twidd is shown in Figure 1a. Briefly,

the algorithm (1) reads transactions, (2) builds FPTrees over

these transactions, (3,4) rebalances them in the cluster, (5,6)
performs a pre-projection of itemsets and finally, (7) searches

for the remaining frequent itemsets. For the sake of our

discussion it is sufficient to state that the algorithm has two

main adaptive points in its DAG, highlighted in the figure as

# partitions(1) and # partitions (2).

B. Eclat

Eclat is another approach for frequent pattern mining. It

works with a vertical database layout for fast candidate count-

ing by intersecting inverted lists of transactions. We adopted a

local counting strategy [6] to implement Eclat over the RDD

abstraction.

Figure 1b illustrates the overview of our implementation.

The algorithm (1) reads transactions, (2) verticalizes the base,

(3) generates candidates by intersecting itemsets, (4) outputs

local counts, (5) aggregates local counts into global counts

and filter the original set of itemsets keeping only the frequent

ones. The algorithm continues with other rounds of these same

steps until no frequent itemset is found. For the sake of our

discussion it is sufficient to state that the algorithm has one

main adaptive point, highlighted in the figure.

C. PageRank

PageRank is a link analysis algorithm that computes the

relative importance of nodes in a network. It does so by

assigning initial ranks to every node and iteratively updating

each value based on the node’s neighborhood. Initially, the

rank of every node is set to 1.0 and on each iteration, every
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Application Dataset Size Blocks Details

Twidd/Eclat twitter 7.9 GB 63
# transactions: 233mi

# distinct items: 64mi

PageRank gplus 9.3 GB 75
# nodes: 35mi

# edges: 575mi
TABLE I

ALGORITHMS AND DATASETS

node divides its own rank among its neighbors. Thus, a node

with rank r and n neighbors would share r
n of its own rank

with each neighbor. Naturally, every node receives rank shares

from all its neighbors and sum up those values to build a new

rank. The process continues for a number of iterations or until

values converge. Figure 1c illustrates the algorithm.

Despite the number of input partitions, PageRank has adap-
tive points on every iteration, as we have to (steps 3, 5, etc.)
join ranks and links to produce contributions and (steps 4, 6,
etc.) reduce these contributions per node.

IV. CHARACTERIZATION

We ran our experiments in a cluster with 9 machines, each

a quad-core Intel Xeon X3440 with hyperthreading and 8 MB

cache, 16 GB RAM, a 1 TB 7200 RPM SATA disk, running

64-bit Linux 3.2.0. The nodes are connected with Gigabit

Ethernet. The cluster is configured with Spark v1.5.1 and

Hadoop/HDFS v2.5.0. We used two real world data sets in our

evaluation: a set of Twitter posts, containing tweets crawled

using the Twitter API; and a Google+ graph representing users

(nodes) and friendships (edges) [7]. All datasets were loaded

into HDFS with a replication factor of 2. Table I summarizes

the setup for algorithms and datasets.

A. Factorial design

Full factorial designs are used to estimate the effects of

factors in a system w.r.t. a given response variable (metric).

The output is a model for each metric that associates metric

variations to factors, their interactions and any error, which

indicates variations not accounted to by the factors.

We adopt a 2k factorial design in order to estimate the

effects of key parameters in Spark applications under different

circumstances. We evaluate Twidd and Eclat in a cluster

with 9 machines. The factors were chosen based on common

application parameters for each (executors memory and cores)

and number of partitions in different steps on each algorithm,

as highlighted in Figures 1a and 1b. The factors/levels used

to configure each algorithm are summarized in Table II. Our

goal was twofold: to see how each factor affected the expected

execution time of the algorithms (metric run-time), and to

understand how they affected the amount of time spent on

the garbage collector (metric GC).

Twidd Exec. Mem. Exec. Cores # Partitions (1) # Partitions (2)
7 GB 4 257 257

14 GB 8 1021 1021

Eclat Exec. Mem. Exec. Cores # Partitions
7 GB 4 257

14 GB 8 1021
TABLE II

2k FACTORIAL DESIGNS

Figure 2a illustrates the results for Twidd. There is little

error (1%) in GC, so the time spent in the garbage collector

is well defined by the factors considered. Also 80% of GC’s

variation is explained by memory and cores in isolation. This

is expected: more memory and less cores imply in larger

heap space to collect with less computational power. Different

from GC, run-times are subject to error, indicating variations

that could no be explained by the factors considered. Twidd

make use of complex data structures, which increase garbage

collection time [8], and GC itself has been recognized as

one major factor that may lead to large variations in parallel

applications performance [9].
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Fig. 2. Performance effects (significance level = 0.05). 9 machines, where
one is always the execution master.

The results for Eclat are shown in Figure 2b. Error rates

are low, even for run-time, so factors are determinant in all

cases. Indeed, garbage collection overhead in Eclat is much

lower than in Twidd, due its use of simpler data structures

and arrays. Memory and cores in isolation continue to play

important roles in % GC. However, the number of partitions

is the factor that most impact the metrics (88% of variations).

Thus, partitioning has a great impact in Eclat’s performance

and this fact highlights the potential importance of adaptive

execution in such cases.

B. Load balancing

We discuss load balancing by looking closely at Twidd’s

4th and 5th stages (Figure 1a), as we alter data partitioning

by varying the number or partitions in the input of stage 4

(#partitions(1)), which also affect stage 5.

Figure 3 shows additional metrics regarding Twidd’s 4th

stage. The x-axis refers to the number partitions in the 4th

stage’s input. Note that skewness in running times tends to

increase as more partitions are used. If we observe the amount

of data in the shuffle reads we find a similar behavior, i.e.,
the amount of data each task reads from the shuffle becomes

more skewed as the degree of parallelism increases. These

results suggest that run-time grows together with the volume

of data in the shuffle read. Indeed, Pearson and Spearman

correlations between those two dimensions are 0.94 and 0.95
respectively. However, by looking at the number of records

processed per task, we see almost no outliers, which means

that the partitioner is dividing work equally based on the

number of records from the shuffle write of the previous stage

that are assigned to each node. Thus, load imbalance is coming
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Fig. 3. Behavior of Twidd’s 4th execution stage as we vary #partitions(1). Most of the imbalance is explained by the uneven data reads over a shuffle step.
Run-time and shuffle read correlations: Pearson = 0.94; Spearman = 0.95
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Fig. 4. Behavior of Twidd’s 5th execution stage as we vary #partitions(1). Most of the imbalance is inherent to the algorithm. Run-time and shuffle read
correlations: Pearson = 0.19; Spearman = 0.23

from the fact that records have different sizes and, therefore,

variable processing costs.
The takeaway is that imbalance cannot always be mitigated

by increasing the number of partitions of a given stage. In

such cases, hash partitioning (which is the default in Spark)

cannot capture and distribute the workload equally; arbitrarily

increasing partitioning could result in anomalous cases [1].
A different result was found in the analysis of Twidd’s

5th stage, shown in Figure 4. The running time median

cannot be estimated from other metrics at any degree of

parallelism, which means that tasks have variable processing

costs (Fig. 4a). At this point we could not claim this is due

to bad partitioning or inherent to the algorithm. However,

by looking at the distribution of tasks’ shuffle read volumes

(Fig. 4b) and number of records (Fig. 4c) we conclude,

however, that the median better represents those metrics (boxes

are symmetric, except for outliers in the number of records).

Thus, the cause for run-time skewness in the 5th stage is not

naive partitioning, but inherent to the algorithm.

V. ADAPTIVE EXECUTION

A stage of execution in Spark can be described in terms of

its function, data inputs, data outputs, shuffle reads and shuffle

writes. Many machine learning and graph processing algo-

rithms are based on iterative and/or converging approaches.

When translated into DAGs, these techniques expose opportu-

nities for re-execution optimization. Indeed, the partitioning

scheme (number of partitions and data placement) can be

changed in the beginning of every stage, because data are be-

ing reorganized in every shuffle. In case of iterative algorithms,

the logic of one iteration certainly will be applied to another

context later on. By tying up program’s logic with the data it

consumes/produces, one can classify groups of stages into:

1) Equal (Peq), i.e., they execute the same function with

the same ratios of inputs/outputs.

2) Similar (Psim), i.e., they execute the same function with

different ratios of inputs/outputs.

3) Unrelated (Pun), i.e., share few or no properties.

The approach adopted by PageRank produces the same

communication pattern every iteration: graph nodes share rank

contributions with their neighbors. Therefore, iterations stages

are Peq . One simple way to optimize Peq stages, given that

we find the right amount of parallelism for an earlier iteration,

is to simply use that knowledge for later iterations.

On the other hand, we also note algorithms that re-execute

stage functions several times but in different contexts. There-

fore, the problem has the potential for growing/shrinking

over time. Despite that, historical information about previous

executions could help the scheduler to optimize upcoming

steps by estimating the desired parallelism. Eclat, for example,

generates different contexts on each iteration, due to its

combinatorial nature. Thus, its iterations are Psim. In that case,

it is erroneous to assume that the same parallelism employed

initially would guarantee the same gains over time. Thus, we

lack criteria to apply to Eclat, for example, the same approach

we used in PageRank. The application should be able to

estimate new configurations based on the common knowledge

of re-executions. In this context, the common knowledge is

that we ran the same stage under certain circumstances (inputs

and outputs) and got some cost associated to it (e.g., run-time).

Then, it becomes a matter of, given another set of inputs and

prior knowledge, find the proper tuning for this new setting.

The last category (Pun) refers to stages that are completely

unrelated during a single execution, Twidd fits this category. In

this case the only information that can be leveraged is between
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executions. However, it can be advantageous to learn from past

events if the jobs are recurrent.

Next we present how to capture these behaviors and tune

applications based on information about previous executions.

A. Reconfiguration Tool
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Fig. 5. Tool architecture and overview

Figure 5 shows the design and overview of the tool devel-

oped in this work. The user application starts with or without

log information from a previous execution (0). We leverage the

standard log information provided by the Spark framework,

which is based on run-time events and associated metrics.

If no log information is provided the application executes as

usual and registers the first log, which can serve as a feedback

for future executions. The system internally instantiates an

Adaptation Helper (section V-C) (1), which then initializes

and asks the Analyzer (Section V-B) to parse and make some

decisions based on the observed statistics (2). Those decisions

are returned to the helper as actions to be applied in the

current execution (3). The helper then translates these action

into properly partitioned RDDs back to the application (4).
Finally the current log is placed in the repository.

B. Analyzer

The purpose of the Analyzer is to receive execution logs

from the Adpt. Helper, identify points for adaptation in the

application, apply the configured policies based on the data

collected and finally deliver a set of actions back to the Adap-
tation Helper. Actions in that context indicate reconfigurations

in application’s partitioning over time. The analyzer also

captures the communication pattern of the application, i.e., it

makes decisions taking into account whether the application is

regular and/or iterative. Thus we employ the same premisses

introduced in section V.

The current version of our tool supports three types of ac-

tion: (UNPAction) indicates that the number of partitions of

an adaptive point must be updated; (UPAction) indicates that

the partitioning strategy (a.k.a. partitioner) must be changed;

and (WarnAction) handles the cases where some issue was

detected but any automatic action to mitigate the problem

is known. For instance, UPAction can request the change

of partitioner from hashPartitioner to rangePartitioner. On

the other hand WarnAction can indicate to the user some

problem that requires his intervention, like identifying the

source of imbalance (Section IV-B).

Which action to choose depends on the current set of de-

ployed policies in the analyzer. As a testbed, we created some

policies regarding the discussed bottlenecks. It is important to

point that the following policies are not extensive but enough

to demonstrate the applicability of our framework:

a) Empty Tasks (ET): if there are tasks that process no

data, we remove them from the number of partitions. That may

lead to an update to the number of partitions at the adaptive

point (UNPAction).

b) Memory/Disk Spill (SP): if the logs indicate a task

has to perform data spill (save data for later processing due

to space limitations), we try to reduce the load of each task

by a factor of how much spill needed to be done in order to

shuffle write the data to next stage. The potential result is an

action that increases the number of partitions (UNPAction).

c) Garbage Collection (GC): in this case we first use

the concept of skewness to determine whether garbage collec-

tion is an issue or not. If this is the case then we split each

task proportionally to the minimum GC overhead observed.

We refer to GC overhead as the fraction of task’s run-time in

which its executor was collecting garbage. The result is also

an action that updates the number of partitions (UNPAction).

d) Task Imbalance (TI): this action automates our

methodology of the load balancing analysis from Section IV-B.

We consider sources of imbalance being: (a) inherent; (b)
due key distribution; or (c) due variable costs for the same

key. Due limitations of the environment, we are unable to

adapt and handle some kinds of imbalance automatically

in most situations. Most cases of imbalance output actions

of warning (WarnAction) except for imbalance from key

distribution which indicates that rangePartitioner may be a

solution (UPAction).

The system also supports incorporating new policies to the

analyzer. To accomplish that the user needs to make an extra

call in its program: preAdapt(sc, p1, p2, ...), where pi
is a policy function with the following definition:
def myPolicy(rdd: RDD,

stages: List[Stage]): Action

In this definition rdd contains all the information about the

RDD representing an adaptive point. Furthermore stages
contains the list of all stages that begins in that adaptation

point. For simplicity, in our presented policies, we chose the

oldest created stage to extract and analyze its metrics on behalf

of the adaptive point.

C. Adaptation Helper

The adaptation helper (Adpt. Helper) couples user applica-

tions with their respective decision makers (the Analyzer). Its

main function is to translate actions delivered by the Analyzer
into real modifications in the current execution, transparently

to the user. Figure 6 summarizes the tool API. Basically the

user can feed it with previous execution information (log
feedback), pre-adapt and/or include new policies (app init) and

call operators aware of adaptive points (mod. operators).

The user interacts with the Adpt. Helper through overwritten

Spark operators that are aware of adaptive points. Fortunately
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Log Feedback: conf.set("spark.adaptive.logpath",
logapp,n)

App. Init: preAdapt(sc, p1, p2, ...)

Mod. Operators: textFile, reduceByKey, aggregateByKey,
join, partitionBy
with an extra parameter ap, i.e., adaptive point.

Fig. 6. Tool API

the operators that represent adaptive points are well defined in

the system (reduceByKey, textFile, join, etc.), i.e. any operator

that allows setting the number of partitions and/or partitioner.

Our system leverages scala implicits to redefine these special

operators. Therefore the only requirement for using them is to

explicitly import their definitions (AdaptableFunctions).

The Adpt. Helper can be instantiated (atomically) by one of

two events. First if some overwritten operator is being called

for the first time. Second if the user called preAdapt before

to include their custom policies, for example. Also, the Adpt.
Helper triggers the Analyzer initialization and execution. At

this moment the helper potentially has all actions delivered by

the analyzer associated with their respective adaptive points.

Given that actions are available, every time the user code

executes some of these overwritten operators the system ver-

ifies if there is action to be applied for the current adaptive

point. If this is the case, the new RDD is created considering

the semantic of the action, like update the number of partitions

or the partitioner. Otherwise, the execution continues with the

default behavior. Therefore our solution is totally safe and does

not break existing implementations.

Finally we had to settle two design decisions: (1) how logs

are forwarded to the Analyzer and (2) how adaptive points

are distinguished from each other. For the first decision we

require the user to inform the log path of a previous execution

by setting the configuration spark.adaptive.logpath
in the SparkConf. For the second decision we work with two

alternatives. We support for most of the operators an extra

parameter that identifies the adaptive point. If no identifier is

provided the system consider a default name composed by

the operator and the line of user code it was called. We plan

to include automatic tracking of applications and logs in the

future.

D. Wordcount example

To illustrate the use of the tool, Figure 7 represents a

Word Count application in Spark that uses it. The bold

parts highlight the differences in comparison to a common

implementation. Note that we (a) import the special functions

(line 1); (b) set the feedback log of a previous execution in

the SparkConf (line 5); (c) pre-adapt before execution without

custom policies (line 7); and (d) explicitly choose an adaptive

name for the reduce phase (line 10).

It is important to mention that from all of these changes only

(a) and (b) are mandatory. In fact the user could choose to not

pre-adapt its application at line 7 and then this would be done

at the time of reduceByKey call. Furthermore, as discussed, the

1 import br.ufmg.cs.systems.sparktuner.rdd.AdaptableFunctions._

2 object Wordcount {
3 def main(args: Array[String]) {
4 val conf = new SparkConf().setAppName("Word Count").

5 set("spark.adaptive.logpath", "/tmp/log1")

6 val sc = new SparkContext(conf)

7 preAdapt(sc)

8 val counts = sc.textFile ("/tmp/sample").

9 flatMap (_ split " ").map (w => (w,1)).

10 reduceByKey (_ + _, "ap-counting")

11 println (counts.count + " words")

12 sc.stop()

13 }
14 }

Fig. 7. Adaptable Wordcount

system provides a default adaptive name for known operators,

like the one used for reduction in this example. Thus setting

”ap-counting” at line 10 is also optional.

VI. EVALUATION

Our environment for evaluation is the same used for char-

acterization (Sec. IV). Here we evaluate our tool considering

the selected applications and the issues found. The following

performance measurements include the time spent by the

Analyzer to parse and decide actions for the applications, in

case of experiments using the tool. However, in all settings, we

observed no more than 3 seconds for this overhead in our naive

implementation of the Analyzer. Section VI-A presents the

results for PageRank, which accounts for iterative and regular
applications. Section VI-B presents the results for Eclat, i.e.,

an iterative and irregular application. Finally Section VI-C

presents discussions about Twidd’s executions, representing

non-iterative applications.

A. PageRank

We evaluated PageRank under several degrees of parallelism

for the input partitions. Figure 8 shows the results. Initially,

we ran the algorithm with different degrees of parallelism. We

refer to that as Conservative execution because the number of

input partitions, derived from the number of blocks in HDFS,

is used naively as the default degree of parallelism for the

reductions in every iteration. Then, after identifying that 1024

partitions would speedup the reductions, we re-ran the tests

with different degrees of parallelism for the input partitions,

but limiting parallelism during the iteration. We refer to that as

Adaptive.Manual because we change the number of partitions

of the reduce phase regardless of the input but we do so by

manually setting this parameter in the code. The third category

is the one obtained by our tool (Adaptive.Tool), in which

we used the logs from conservative approach to optimize

partitioning automatically.

Note that with Adaptive.Manual we improved overall per-

formance, obtaining speedups of 2.8x, 2.2x, 1.7x and 2.3x in

the first four configurations. The results with 1024 partitions

are exactly the same, since it was our baseline. Finally, we
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observe no gain when the number of input partitions exceed

the cost of reduction (with 2048 partitions). More important,

the results using Adaptive.Tool were able to keep up with the

best case scenario of Adaptive.Manual, which shows that our

tool and sample policies were effective, with the bonus of

automatic adaptation.

The execution with 256 input partitions show an interesting

fact related to the tool’s operation. In its current imple-

mentation, the tool applies only one action w.r.t. only one

policy per adaptive point each time it runs. In some cases,

the first reconfiguration may lead to a second bottleneck

becoming prevalent. We can see that the resulting time for

256 input partitions when we ran Adaptive.Tool once with

the log information from the Conservative execution as input

was worse than the conservative execution in a first round

(notice the number or partitions chosen, 611, was close to 512,

and so the performance was close to that conservative case).

The action recommended by the Analyzer was to increase the

number of partitions based on a high observed spill, i.e., an

UNPAction that increased the number of partitions based on

the policy SP (Section V-B). That solved the spill problem, but

the new execution suffered from another bottleneck, garbage

collection overhead. A second round of execution using our

tool with the log of the first round was able achieve the

desired optimal performance. In this case the action returned

by the Analyzer was to increase the number of partitions

(UNPAction) but w.r.t. the policy GC from Section V-B.

The bar 4.Adaptive.Tool.Iteration.2 shows that last result.
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Fig. 8. Optimizing Peq , i.e., stages that repeat with the same communication
pattern. Adaptive re-executions (iterations) can leverage information about
the previous degrees of parallelism. Numbers inside bars indicate how many
partitions some iteration of the tool has decided for the reduce phase.

B. Eclat

We evaluate Eclat varying the degree of parallelism of

adaptive point in Figure 1b. Figure 9 shows our results for

three scenarios. As before, Conservative refers to maintaining

the number of input and reduce partitions the same on every

iteration, Adaptive.Manual considers a heuristic based on the

specific behavior of the algorithm, and Adaptive.Tool shows

the results for our tool, having Conservative logs as input.

To build Adaptive.Manual, we consider a heuristic that

is used to follow the elasticity of Eclat’s problem size. We

observe the selectivity factor of the first operator before the

shuffle took place, i.e., a factor of selec = input
shuffleWrite .

This factor is used to tune the parallelism for the reduction

in the first iteration. We set the number of reducer partitions

to nparts = max(� inputPartitions
selec �, totalCores), setting the

number of cores as a low limit. The remaining iterations are

tuned proportionally to shuffleWrite with nparts of the

first iteration.

The policy applied by the Analyzer in Adaptive.Tool is the

one related to empty tasks considering the elastic behavior

of the application. It makes no assumption specific to the

algorithm of the application.

Both adaptive solutions are specially efficient on fixing

under and overestimations in the number of partitions (75,

1024 input partitions). The gain is small in intermediary

values due to the approximation to the optimal parallelism, in

which candidate generation (map phase) overcome the global

counting (reduce phase). Also, every result obtained by our

tool (Adaptive.Tool) outperforms or is at least equivalent to

the manual adaptation, with advantage of being an automatic

approach.

Adaptive execution also has the capacity to reduce the

number of launched tasks in comparison to the conservative

approach, therefore reducing the total amount of resources

used during each step. We indicate this gain inside the bars

as the percentage of reduction in the launched tasks for the

reduction stages w.r.t. the conservative approach. Note that

the number of tasks launched is reduced by at least 78.4%

for Adaptive.Manual and by at least 73.6% for Adaptive.Tool,
even in cases where run-time gains are modest.
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Fig. 9. Optimizing Psim, i.e., stages that are repeated with different inputs.
The degree of parallelism must adapt to the elasticity of the application.
Percentages inside bars represent reductions in the number of launched tasks
relative to the Conservative approach.

C. Twidd

Figure 10 shows the warn messages generated by the tool

when a Twidd log discussed in Section IV-B is used. Note that

it captured the same sources of imbalanced discovered in that

analysis, i.e., stage 4, where muTrees are merged, suffers from

imbalance due variable costs for the same key, and stage 5,

where rhoTrees are merged, suffers from imbalance inherent

to the application. As those issues cannot be handled trivially
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WARN OptHelper: WarnAction(muTrees, VariableCost)
(task-imbalance,257)

WARN OptHelper: WarnAction(rhoTrees, Inherent)
(task-imbalance,257)

Fig. 10. Tool warnings

by the current version of Spark’s execution engine, the actions

are merely warnings, since user’s intervention is necessary.

VII. RELATED WORK

Several works propose job optimization for data-parallel

frameworks [10], [11]. Those systems work with structured

data (SQL-like), where the knowledge about data organization

exposes more opportunities for optimization. Our work regards

general purpose data processing, where one have little or no

prior information about the inputs.

Optimization of recurring jobs can be made by creating a

statistics repository of applications executed in the cluster as

done in Scope [12]. The approach in that case aims at future

re-executions and assumes that similar jobs process data with

similar properties. Thus, it is orthogonal to our discussion.

Automatic reconfiguration of recurring jobs is another op-

tion in performance optimization. Starfish [13] is able to

construct job profiles based on previous executions. Then, it

explores the space of Hadoop internal configurations (using a

What-If engine) to find the best setup for later jobs. However,

Starfish optimizes just static parameters that must be set prior

to the application submission and cannot be changed after that.

Therefore, this is also orthogonal to our approach.

Adaptive query execution is an ongoing issue in the Spark

project that proposes improvements to the run-time engine [2].

The main idea is to postpone stage submissions to allow

partitioning focused on statistics collected in earlier stages.

That new feature, which aims to optimized general cases,

could benefit from extra knowledge of iterative algorithms and

stage re-executions, as discussed here.

Most of the data parallel frameworks run on garbage-

collected languages and this is the case for Spark with the

Java Virtual Machine (JVM). Several algorithms for garbage

collection suffer from long GC pauses and memory overheads.

Broom [14] uses a region-based memory management that co-

locates objects having the same collection footprints, which

avoids large heap scans every time a full collection occur.

Holistic approaches [9] plan to coordinate collections in a

distributed environment. The latter could improve scheduler’s

decisions by providing worker state awareness.

Memory management in Spark is moving towards a manual,

optimized memory layout [15], which would remove garbage

collection for critical steps of execution w.r.t. memory, like

aggregations. Despite that, optimizers could still benefit from

executor load feedback, apart from this knowledge coming

from virtual machines or manual instrumentation.

VIII. CONCLUSION

Data-parallel frameworks simplify the task of data scientists,

allowing them to write parallel applications using high-level

abstractions. However, they still face some challenges, like to

create self tuning systems in scenarios where the user has total

freedom to write any code.

We characterized sources of inefficiency in three repre-

sentative applications, showing the impact of partitioning to

applications performance and also that in order to handle

imbalance one must identify one of its several potential causes.

Then we presented the concept of adaptive execution and how

the communication pattern of the applications can be used to

optimize their performance. Finally, with all that background,

we built a tool for automatic reconfiguration of recurrent

applications. Our solution is configurable, compatible with

any Spark core application and allows pluggable policies for

bottleneck mitigation. The tool receives as feedback logs of

previous executions and automatically decides new partition-

ing parameters for the adaptive points. We evaluated our tool

against a conservative and an adaptive/manual approaches. We

were able to observe consistent improvements w.r.t. the conser-

vative approach and fairly equivalent results when compared to

manual adaptation. We believe that our work is a step towards

self tuning data parallel systems.
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