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Abstract—The increasing amount of data being stored and
the variety of applications being proposed recently to make
use of those data enabled a whole new generation of parallel
programming environments and paradigms. Although most of
these novel environments provide abstract programming inter-
faces and embed several run-time strategies that simplify several
typical tasks in parallel and distributed systems, achieving good
performance is still a challenge. In this paper we identify some
common sources of performance degradation in the Spark pro-
gramming environment and discuss some diagnosis dimensions
that can be used to better understand such degradation. We then
describe our experience in the use of those dimensions to drive
the identification performance problems, and suggest how their
impact may be minimized considering real applications.

I. INTRODUCTION

Data Science emerges as a new paradigm for exploring and

getting value from data. It evolved from data mining, machine

learning, big data and analytics, among others, in particular,

with respect to the models and algorithms employed. On the

other hand, data scientists are more pro-active and demanding

in terms of task complexity and quality requirements.

An increasing popular strategy for deploying these appli-

cations is to parallelize them using “data flow” environments

such as Hadoop and, lately, Spark. Those environments pro-

vide abstract programming models that simplify the task of

the data scientists to describe an algorithm in a way that may

be easily deployed in a large number of machines.

In looking for the best performance, those frameworks

face several challenges. Finding optimal partitioning is hard

because different programs can have different computational

costs for the same input and execute user defined functions,

which aggravate the issue. Besides that, programs may also

require changes of plan and reconfigurations to achieve the

best performance over time. Optimizations from a static point

of view [1] or when the structure of the data is known [2]–

[4] are the most common practices in that sense. However,

it is still an open problem to optimize performance when no

assumptions can be made about the data or when the execution

model imposes limitations to automatic reconfiguration [5].

In this work we present our strategy for performance

diagnosis of Spark data intensive applications and instantiate

the strategy on applications representing common behaviours

in the area. We are aware of one work that systematically

study performance bottlenecks in new generation data-parallel

frameworks [6] from a general point of view. Instead, we focus

on special cases where the common rules do not seem to

apply. By identifying some significant dimensions of analysis

to guide our experimental evaluation, we are able to identify

important factors that can affect the performance of the re-

sulting applications. Based on our analysis we discuss some

possible solutions and show opportunities for improvement.

II. DATA PARALLEL PROCESSING EXECUTION MODEL

One can think of a parallel program as a data flow, com-

posed by operators, inputs and outputs. To achieve parallelism,

data is partitioned and distributed among compute nodes.

The operations to be applied to data in frameworks like

MapReduce [7], Dryad [8] and Spark [9] are described using

DAGs (Directed Acyclic Graphs). The interpretation given to

vertices and edges in those graphs depends on the system, but

they always represent the way data flows and is transformed.

In this paper, we chose Spark as the framework to use in our

discussions, since it is a modern, widely used system. Spark’s

engine defines computation DAGs in terms of collections

(Resilient Distributed Datasets, RDDs) and transformation

operators whose relationships are determined by different

types of dependencies [9]. Transformations with narrow de-
pendencies represent computations that do not require remote

communication and thus can be pipelined (e.g., mapping

and filtering). On the other hand, wide dependencies mark

the need for communication and mark the frontier between

stages of execution (e.g., reduction and join). Those stages

are composed by tasks running the same code and represent

opportunities for changing the application parallelism.

III. PERFORMANCE DIAGNOSIS DIMENSIONS

In this section, we present diagnosis dimensions that will

ground our evaluation and provide a common terminology.

Data layout (DL): when programs read their raw input,

it is stored in data structures that carry additional semantic

information. Primitive and composite types, contiguous arrays

and pointers are common ways for making sense of data in

memory. Object oriented languages add a layer of abstraction

that improve productivity and modularity and for that they

are often used in the majority of data parallel frameworks,

like Hadoop and Spark. However, the added abstraction comes

with increased overhead in memory usage. Furthermore, those

frameworks run on top of the Java Virtual Machine (JVM),

and the JVM’s garbage collector is known to be sensitive to

memory layout and access patterns [10]. Thus, a few works

2016 16th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing

978-1-5090-2453-7/16 $31.00 © 2016 IEEE

DOI 10.1109/CCGrid.2016.81

273



propose custom alternatives to the traditional garbage collec-

tion mechanisms [11], [12]. In fact, even Spark’s memory

management is moving towards a manual, optimized memory

layout [13]. For these reasons, it is worthy to quantify the

impact of data layout on performance.

Task placement (TP): considering the established ex-

ecution model (section II), scaling to the amount of data

is straightforward, since data partitioning dictates the paral-

lelism. However, given that applications process giga- or even

terabytes of data, at any point of time, hundreds or even

thousands of tasks may be ready to be dispatched for execution

in the cluster. It is scheduler’s role to receive all work requests,

pack them into an execution plan and decide which tasks go

to which resource. In many applications, every task can have

a different computational cost, or process a different amount

of data. Thus, the co-allocation of heterogeneous tasks has the

potential for creating unexpected performance issues.

Adequate parallelism (AP): achieving the right degree

of parallelism does not mean just to tune applications for

performance, but also to do so with just enough resources

at each point during execution. In data parallel systems, the

entity responsible for handling parallelism is the partitioner,

which organizes the data based on a number of partitions,

and it must be able to find that adequate parallelism for each

execution. Each excution stage may have a different optimal

degree of parallelism, and the data shuffling between stages

become opportunities to adjust the partitioning accordingly.

Therefore, elastic behaviors encountered along application life

cycle must be taken into account when tuning an application.

Load balancing (LB): beyond the number of partitions,

one must worry about the amount of work assigned to each one

of then. For instance, Spark’s execution model creates invisible

barriers at the beginning of each stage, needed to satisfy data

dependencies before proceeding with execution. Assuming

applications execute stages sequentially, every imbalance in

a stage’s tasks lead to resource idleness, which in turn could

produce create performance bottlenecks. Such load imbalance

might be inherent to the algorithm or, worse, due to bad

partitioning, and only a detailed analysis of execution may

be necessary to determine how to handle the problem.

IV. SELECTED APPLICATIONS

We describe next three algorithms that represent common

patterns of data parallel algorithms: (section IV-A) Twidd;

(section IV-B) Eclat and (section IV-C) PageRank. Next, we

evaluate these algorithms w.r.t. the established dimensions.

A. Twidd: non-iterative with complex data structures

Twidd is an implementation of FPGrowth [14] over RDDs.

It solves the problem of frequent pattern mining: given trans-

actions, each one composed by sets of items, and a support

threshold minsupp, find all subsets of items (itemsets) that

occur in more than minsupp transactions. Most approaches

begin by constructing a global table of the frequent 1-itemsets

(a.k.a. a subset of length 1). The following description assumes

that such table is available in every slave.
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Fig. 1. Selected applications

An overview of Twidd is shown in Figure 1a. The algorithm

starts by reading transactions from the file system (step 1). The

subsets of transactions serve as input to build local prefix trees,

adding items based on their absolute frequency (step 2). The

next step consists of extracting μ-trees from local trees based

on μ-length prefixes (step 3). This is an intermediate procedure

that mitigate imbalance by replicating FPTree nodes in more

than one worker. We map each RDD element (local trees) into

potentially several extracted μ-trees (pairs in an one-to-many

fashion). The output is an RDD of sub-trees keyed by prefixes.

The shuffle occurs (step 4) and sub-trees with common prefixes

are merged together.

The remaining steps represent FPGrowth’s projections. In

special, merged trees are conditioned up to level ρ (step 5),

which results in a new RDD of pairs, similarly to step 3. This is

a pre-projection and concludes the Twidd’s balancing scheme.

Then, a second shuffle guarantees that sub-trees conditioned

to the same prefix are merged together (step 6). The result is

an RDD of final FPTrees, which are independently projected.

The output (i.e. the frequent itemsets) is written into HDFS.

We evaluate Twidd in terms of DL, TP and LB due to

the fact that its implementation is based on complex data

structures (trees) that can expose different behaviors due to

garbage collection and heterogeneous task load.

B. Eclat: iterative and irregular

Eclat is another approach for frequent pattern mining. It

works with a vertical database layout for fast candidate count-

ing by intersecting inverted lists of transactions. For simplicity,

the following description also assumes that the global table of

frequent 1-itemsets is available.

Figure 1b illustrates our implementation. The procedure

starts by reading the transactions from HDFS (step 1). Next,

we perform a database verticalization as required for Eclat

(step 2). However, each RDD partition is verticalized inde-

pendently, which avoids the creation of huge t-lists [15].

The remaining frequent itemsets are found hierarchically

and iteratively. We generate (k + 1)-itemset candidates for

each local partition by intersecting the current t-lists (step 3).

Local counts are extracted for the new candidates (step 4)

and aggregated globally (step 5). These frequencies have two
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purposes: output frequent (k + 1)-itemsets (step 6) and filter

infrequent candidates to build new t-lists for the next iteration

(step 7). The process continues until we reach a level where

no frequent itemset was found.

We evaluate Eclat in terms of DL due its implementa-

tion based on simple data structures. Also, Eclat’s trade-off

between the number of local databases (partitions) and the

degree of t-list replication along with its hierarchical and

combinatorial nature exhibit potential for AP evaluation.

C. PageRank: iterative and regular

PageRank is a link analysis algorithm that computes the

relative importance of nodes in a network. Figure 1c il-

lustrates the algorithm. The links are loaded from storage

and aggregated in the form of adjacency lists (step 1). The

resulting RDD is cached for future reuse. Then, we assign the

initial ranks (initially 1.0) to the links (step 2). Current ranks

are joined with corresponding adjacency lists and produce

rank contributions (step 3). Thus, a node with rank r and n
neighbors would share r

n of its own rank with each neighbor.

We update ranks by summing individual contributions for each

node. The result is a new RDD of ranks. The process continues

for a number of iterations.

We evaluate it in terms of AP, since it may expose oppor-

tunities for optimization of iterative and regular applications.

V. EVALUATION

Our experimental environment is a cluster composed of 9

machines, each containing a quad-core Intel Xeon X3440 with

hyperthreading and 8 MB cache, 16 GB RAM, a 1 TB 7200

RPM SATA disk, running 64-bit Linux 3.2.0. The nodes are

connected with Gigabit Ethernet. The cluster is configured

with Spark v1.5.1 and Hadoop/HDFS v2.5.0. We used two real

world data sets in our evaluation: a set of Twitter posts, con-

taining tweets crawled using the Twitter API (7.9GB, 233mi
transactions and 64mi distinct items); and a Google+ graph

representing users/nodes and friendships/edges [16] (9.3GB,

35mi nodes and 575mi edges). The former dataset is used in

Twidd/Eclat’s evaluation while the latter in PageRank’s.

A. Task placement

Initially we observed the behavior of Twidd and Eclat under

several degrees of parallelism. Figure 2a shows the results. In

Twidd we vary the degree of parallelism of # partitions(1). In

Eclat we vary the input parallelism, i.e., to # partitions.

Partitioning in Eclat is what one would expect, in which

there is a sweet spot that represents the best trade-off for

parallelism., as for Twidd not so much. Twidd’s run-time

behaves similarly to Eclat’s in the beginning. However, at the

range [227, 331] we note some interesting phenomena: run-

time increases with 257 and 327 partitions. Also, we observe

a high variation in the results with 257 partitions.

Next we isolate the stage causing high variation to observe

its tasks over time as a function of respective running times

in best/worst case scenarios (Figures 2c and 2d). Note that

running times stay between 10 and 30 sec in most tasks. As
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Fig. 2. Detailed analysis of Twidd’s 5th stage

for the worst case scenario we plot the same timeline, but

zoomed in on the tasks that have caused the high increase in

run-time (72 of 257). Comparing the two scenarios we note

that not even the most costly outlier of the best case came

close to the upper bound caused by 8 tasks in the worst case

(≈200 sec). We finish our diagnosis by observing that those

stragglers were scheduled nearly at the same time (delta 30ms)

in the same executor 6.

Highlights related to TP and DL: irregular applications

are specially sensitive to parallelism and task placement. In

Twidd, we have identified cases where co-allocation of heavy

tasks on executors running slow due to GC pauses could bring

significant performance degradation to the overall execution.

That behaviour is tighly coupled with the complexity of data

structures employed by Twidd. In fact, this is the reason in

which Eclat presents such predictable behavior w.r.t. varying

the degree of parallelism. Therefore, data parallel schedulers

could benefit of GC-awareness from its worker nodes.

B. Adaptive execution

A stage of execution in Spark can be described in terms

of: its function; data inputs and shuffle read (i.e. inputs) and

data outputs and shuffle writes (i.e. outputs). Many machine

learning and graph processing algorithms are based on it-

erative and/or converging approaches. When translated into

DAGs, these techniques expose opportunities for re-execution

optimization. By tying up program’s logic with the data it

consumes/produces, one can classify some groups of stages

into: (Peq) Equal, which executes the same function with the

same input/outputs; and (Psim) Similar, which executes the

same functions with different inputs/outputs.

Algorithms like PageRank produces the same communica-

tion pattern every iteration: graph nodes share rank contribu-

tions. Therefore, iterations stages are Peq . Figure 3a shows the

constant progression of PageRank’s stage inputs as a function

of iterations. We also note algorithms like Eclat that re-

execute stage functions several times but in different contexts.

Threfore, the problem has the potential for growing/shrinking

over time (Figure 3b). This is the case of Psim stages.

Optimizing Peq: given that we find the right amount

of parallelism from earlier iterations, one could use that

knowledge for later iterations to speedup the execution. We
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Fig. 3. Input size over iterations.
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Fig. 4. Optimizing Peq and Psim

applied that optimization to PageRank. Figure 4a shows the

results. Initially, we ran the algorithm with different degrees

of parallelism (conservative approach). Then, after identifying

that 1024 partitions would speedup the reductions, we re-ran

the tests in the other configurations applying this knowledge

to the reduction step. We refer to that as adaptive because re-

gardless of input partitioning (which users have static control),

we are able to optimize the re-executed step according to its

inherent cost. Note that we improved overall performance in

the first four configurations.

Optimizing Psim: when the problem size varies along the

iterations, the problem elasticity must be addressed properly.

The application should be able to estimate new configurations

based on the common knowledge of re-executions. We validate

this idea by creating a heuristic applied to adapt the Eclat’s

parallelism. We observe the selectivity factor of the first oper-

ator before the shuffle took place, i.e., selec = input
shuffleWrite .

This factor is used to tune the parallelism for the reduction in

the first iteration. We set the number of reducer partitions to

nparts = max(� inputPartitions
selec �, totalCores). The remain-

ing iterations are tuned proportionally to shuffleWrite with

nparts of the first iteration. Thus, the parallelism would follow

the elasticity along the iterations.

Figure 4b shows our results. The adaptive heuristic is

specially efficient on fixing under and overestimations (75,

1024 input partitions). Adaptive execution also allows a more

conscious use of resources. Note that the number of tasks

launched is reduced by at least 78.4% in all configurations.

Highlights related to AP: system optimizers could adapt

the execution according to previously observed communication

patterns, leveraging that knowledge to improve performance

and encourage using the right amount of resources.

C. Load balancing

We investigated the 4th and 5th stages of Twidd w.r.t. load

balancing. Due to the space limitations we only present our

methodology and the most relevant findings. One can diagnose

imbalance by observing the distribution of some important

metrics regarding each stage: run-time (rt); shuffle read (sr)

and number of records (nr). If we get high correlation between

rt and sr along with less skewness in nr, then may be the

case of imbalance explained by tasks with variable costs (4th

stage) and thus, (hash)-partitioning is being naive. On the other

hand, symmetrical distributions on sr and nr along with high

skewness in rt indicate inherent imbalance (5th stage).

Highlights related to LB: load balancing may arise from

an inherent load distribution or from naive partitioning. Also if

the number of records is not a good estimate of tasks’ cost then

advanced instrumentation may be the only reliable solution.

VI. CONCLUSION

Understanding elements affecting the performance of appli-

cations in massive data parallel programs may be a difficult

task due multiple challenges posed by the available frame-

works. We have diagnosed bottlenecks in data parallel systems

over performance dimensions that reflect those challenges. Our

highlights show that sources of inefficiency can be obvious

or not. Thus, it is important to establish methodologies for

evaluation of data parallel systems, which is key to identify

opportunities for performance optimization.
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