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Subgraph enumeration is a heavy-computing procedure that lies at the core of Graph Pattern Mining (GPM) 
algorithms, whose goal is to extract subgraphs from larger graphs according to a given property. Scaling 
GPM algorithms for GPUs is challenging due to irregularity, high memory demand, and non-trivial choice of 
enumeration paradigms. In this work we propose a depth-first-search subgraph exploration strategy (DFS-wide) 
to improve the memory locality and access patterns across different enumeration paradigms. We design a warp-
centric workflow to the problem that reduces divergences and ensures that accesses to graph data are coalesced. 
A weight-based dynamic workload redistribution is also proposed to mitigate load imbalance. We put together 
these strategies in a system called DuMato, allowing efficient implementations of several GPM algorithms via 
a common set of GPU primitives. Our experiments show that DuMato’s optimizations are effective and that it 
enables exploring larger subgraphs when compared to state-of-the-art systems.
1. Introduction

The goal of Graph Pattern Mining (GPM) is to discover subgraphs 
that meet a set of criteria. For example, clique listing is a GPM task aim-
ing to visit all subgraphs that represent a clique pattern with 𝑘 > 2 ver-
tices in a graph, and can be used to detect communities in graphs [36]. 
GPM algorithms are used in areas such as biology [43], social network 
analysis [15], among others. Given an input graph 𝐺, GPM algorithms 
enumerate subgraphs of 𝐺 that match a given property. This property 
can be topological (e.g., clique, chordal, etc.) or statistical (e.g., pattern 
frequency [4]). GPM algorithms rely on a procedure called subgraph enu-

meration, which recursively combines subgraphs with their adjacency 
lists to produce larger subgraphs up to 𝑘 vertices of an input graph.

Fig. 1 depicts one step of subgraph enumeration (extend) using a 
subgraph 𝑠 ← {1, 2} of an input graph. The adjacency lists of 𝑠 are vis-
ited to generate a set of 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑠, which correspond to vertices/edges 
that can be used to extend 𝑠 and generate new subgraphs satisfying 
the given property. The same procedure is applied recursively for each 
extended subgraph. As such, subgraph enumeration deals with a combi-
natorial explosion in the number of subgraphs as the size of the visited 
subgraphs increases, which leads to long execution times and motivates 
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the use of parallelism. For example, the small biological dataset bio-

diseasome [41] containing 516 vertices and 1.2 K edges, around 4 TB
of memory is required to store all induced subgraphs with ten vertices 
(assuming a 4-byte integer per vertex to store each subgraph).

Subgraph enumeration systems were proposed for CPU [13,27,45,
37,47] and GPU [9,7,48,21], offering a good tradeoff between pro-
grammability and performance. These systems are supposed to provide 
an easy-to-use high-level framework that allows efficient implementa-
tions of different GPM algorithms within the same software environ-
ment. In order to use GPUs as a target platform and take full advantage 
of its massive parallelism, they try to mitigate the critical challenges in 
using GPU in the domain: irregularity, combinatorial explosion and enu-

meration paradigm.
Irregularity occurs due to the unpredictable cost for enumerating 

different subgraphs, which results from different sizes of adjacency 
lists of vertices in those subgraphs. The first consequence of irregu-
larity is thread divergence when threads in a warp process different 
subgraphs. Second, there is also the lack of memory coalescence since 
parallel threads often need to access different adjacency lists. Third, 
is the inherent load imbalance in such computations. Since the pro-
cessing costs of subgraphs (e.g. accessing adjacency lists) are not the 
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Fig. 1. One step of subgraph enumeration.

same, so are the subgraph enumeration loads assigned to particular 
threads.

Combinatorial Explosion happens due to the number of subgraphs 
that may be visited when the subgraph size 𝑘 increases. The graph 
visitation strategy used directly impacts memory access patterns and 
parallelism. Breadth-First Search (BFS) and Depth-First Search (DFS) 
are the de-facto approaches to traverse graphs. BFS accesses the en-
tire adjacency list of a subgraph, leading to coalesced memory access. 
However, it materializes all subgraphs throughout the enumeration, and 
consequently, the amount of memory required quickly grows with the 
subgraph size. This limits its use to visit small subgraph sizes [9,45]. 
The DFS reduces the memory demand and keeps a small portion of 
states during the enumeration. However, its irregular and strided mem-
ory requests may severely affect the GPU performance.

The Enumeration Paradigm (pattern-oblivious or pattern-aware) guides 
how subgraphs are visited during enumeration. The pattern-aware 
paradigm requires a target pattern as input to create a custom explo-
ration plan [3,23] and visits only subgraphs matching that pattern, 
eliminating the need for graph isomorphism in the enumeration. Cus-
tom exploration plans reduce the number of intermediate states and the 
computational cost of enumeration but increase the complexity of using 
this paradigm for arbitrary patterns. The pattern-oblivious paradigm vis-
its all subgraphs of a specific size regardless of pattern structure, thus 
eliminating the need of custom tuned exploration plans and recurrent 
visitations over the same input graph. As it visits all subgraphs, it has 
a higher computational cost than the pattern-aware paradigm for a sin-
gle pattern. As the size of the enumerated subgraphs and the amount of 
patterns increase, the tradeoff between using these paradigms is non-
trivial to quantify. Therefore, we argue that supporting both paradigms 
is an important feature.

This paper presents a GPM system called DuMato, which proposes 
execution strategies and optimizations to mitigate the challenges for 
efficient subgraph enumeration on GPUs. DuMato allows the efficient 
implementation of different GPM algorithms using a high-level API 
that supports both enumeration paradigms (pattern-aware and pattern-
oblivious). DuMato addresses the irregularity with a subgraph explo-
ration strategy that reduces memory requirements compared to BFS, 
enables better memory access coalescency and parallelism opportuni-
ties than DFS, and provides opportunities of data reuse throughout the 
enumeration. We also developed novel load-balancing strategies that 
improve the GPU utilization with low overhead and, consequently, the 
overall performance of the GPM algorithms developed in DuMato. This 
paper extends our previous work [18] with a detailed description of the 
solution and a more detailed related work; a redesign in the execution 
workflow with general-purpose core primitives to allow a new opti-
mization that integrates the compaction phase of the DuMato with the 
filter phase; a novel load-balancing strategy; the inclusion of another 
GPM application (subgraph matching); the support for both enumera-
tion paradigms (pattern-aware and pattern-oblivious). The experiments 
have also been carried out in more detail, including a new optimiza-
tion formulation and an ablation analysis that studies the effect of 
parameters on performance. The main contributions of the work are 
2

summarized as follows:
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• We propose the DFS-wide traversal strategy targeting GPU systems to 
reduce the memory demand and improve regularity. DFS-wide al-
ternates between BFS and DFS to provide opportunities for memory 
coalescence with reduced memory demand. The DFS-wide model-
ing has a predictable affordable memory consumption and allows 
the reuse of intermediate states throughout the enumeration. Du-
Mato enumeration phases have been modeled as warp-centric steps

to minimize divergence. All phases were proposed based on only 
three core primitives, allowing a simplification in the execution 
workflow that improves the overall performance and simplifies 
the API. Our novel warp-centric design, along with the DFS-wide 
traversal strategy, achieved an average speedup of 67× vs DFS.

• We developed a low-overhead warp-level load-balancing strategy 
that uses the CPU to monitor and migrate load among GPU thread 
warps. We extended our previous load-balancing to propose a new 
strategy that uses the weight of each warp to redistribute workload 
better, and several jobs are allocated to warps to increase GPU’s 
occupancy. We evaluated the load-balancing layer and the perfor-
mance impacts when varying the parameters of the algorithm. This 
strategy leads to an average speedup of 19× vs the warp-centric 
design without load balancing and improves our previous load-
balancing algorithm [18] by an average speedup of 1.40×.

• Underpinning the above efforts, we present a novel GPM runtime 
system called DuMato, targeting GPUs. DuMato proposes a general-
purpose execution modeling and workflow for GPM on GPUs, and 
is the first subgraph enumeration system to support both enumer-
ation paradigms (pattern-oblivious and pattern-aware). DuMato is 
typically an order of magnitude faster and has been able to mine 
larger subgraphs than other systems.

We have made our system publicly available through the following link: 
https://github .com /samuelbferraz /DuMato.

2. Background

This section introduces definitions used to represent GPM algo-
rithms. Let 𝑉 (𝐺) and 𝐸(𝐺) be, respectively, vertices and edges of a 
graph 𝐺. Without loss of generality, assume undirected graphs without 
labels. A traversal (Definition 2) represents an order that the vertices 
of a subgraph are visited. The subgraph enumeration is a combinato-
rial procedure that generates new subgraphs by visiting neighborhoods

(Definition 1).

Definition 1. Given a subgraph 𝑆 of a graph 𝐺, the neighborhood of 
𝑆 is the set of vertices 𝑁(𝑆) such that, given any vertex 𝑣𝑖 in 𝑉 (𝐺), 
𝑣𝑖 belongs to 𝑁(𝑆) iff 𝑣𝑖 is not in 𝑉 (𝑆) and is adjacent to at least one 
vertex in 𝑉 (𝑆).

Definition 2. A traversal over a graph 𝐺 is a list of its vertices, denoted 
as 𝑡𝑟, and for any two values 𝑡𝑟[𝑖] and 𝑡𝑟[𝑗] where 𝑖 < 𝑗, 𝑡𝑟[𝑖] was visited 
before 𝑡𝑟[𝑗] in the traversal.

Subgraph enumeration may visit distinct subgraphs with the same 
properties, and we say there is an isomorphism (Definition 3) between 
them. Two different traversals may visit the same subgraph 𝑆 in differ-
ent orders, and we say there is an automorphism (Definition 3) between 
them.

Definition 3. An isomorphism is a function that maps vertices of two 
graphs, G and H, in a one-to-one correspondence. It is called an isomor-
phism if for every edge between vertices in G, there is a corresponding 
edge between vertices in H. If the isomorphism between two graphs 𝐺
and 𝐻 is such that the vertices of G and H are the same, then it is called 

an automorphism.
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Given a graph 𝐺 and a subgraph 𝑆 of 𝐺, one may reach 𝑆 through 
different traversals. The only traversal allowed to visit a subgraph 𝑆
in a graph 𝐺 is known as the canonical candidate. Algorithms that 
filter canonical candidates are essential to avoid redundant computa-
tion throughout enumeration. To categorize subgraphs, GPM algorithms 
usually convert canonical candidates to a unique representation in a 
procedure known as canonical relabeling.

The subgraph enumeration procedure receives a graph 𝐺, a starting 
traversal 𝑡𝑟, the target size 𝑘 of the enumerated subgraphs, a property 
function 𝑃 used during enumeration to keep only the traversals match-
ing the desired property, and an output function 𝐴 that produces results 
of the algorithm (e.g., a counter). One should provide specific 𝑃 and 𝐴
functions to implement a GPM algorithm.

Algorithm 1: Pattern-oblivious and pattern-aware paradigms.

1 𝑣𝑜𝑖𝑑 𝑃𝑂(𝐺, 𝑡𝑟, 𝑘, 𝑃 , 𝐴):
2 𝐢𝐟 (|𝑡𝑟| == 𝑘):
3 𝐴(𝑡𝑟);
4 𝐫𝐞𝐭𝐮𝐫𝐧;
5 𝑁 ′ ←𝑁(𝑡𝑟);
6 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ∈𝑁 ′):
7 𝑡𝑟′ ← 𝑡𝑟.𝑎𝑝𝑝𝑒𝑛𝑑(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒);
8 𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙← 𝑖𝑠𝐶𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙(𝑡𝑟′);
9 𝑚𝑎𝑡𝑐ℎ ← 𝑃 (𝑡𝑟′);

10 𝐢𝐟 (𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙 𝐚𝐧𝐝𝑚𝑎𝑡𝑐ℎ):
11 𝑃𝑂(𝐺, 𝑡𝑟′, 𝑘, 𝑃 );
12

13 𝑣𝑜𝑖𝑑 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒_𝑃𝑂(𝐺, 𝑘, 𝑃 , 𝐴):
14 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡(𝑣 ∈ 𝑉 (𝐺)):
15 𝑃𝑂(𝐺, {𝑣}, 𝑘, 𝑃 𝐴);
16 𝑣𝑜𝑖𝑑 𝑃𝐴(𝐺, 𝑡𝑟, 𝑘, 𝐸𝑃 ):
17 𝐢𝐟 (|𝑡𝑟| == 𝑘):
18 𝐴(𝑡𝑟);
19 𝐫𝐞𝐭𝐮𝐫𝐧;
20 𝑁 ′ ← ∅;
21 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡(𝑖 ∈𝐸𝑃 [|𝑡𝑟|].𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑖𝑒𝑠):
22 𝑁 ′ ← 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑁 ′, 𝑡𝑟[𝑖].𝑎𝑑𝑗);
23 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ∈𝑁 ′):
24 𝑠𝑦𝑚 ← 𝑏𝑟𝑒𝑎𝑘𝑆𝑦𝑚(𝑡𝑟, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝐸𝑃 );
25 𝑡𝑟′ ← 𝑡𝑟.𝑎𝑝𝑝𝑒𝑛𝑑(𝑛);
26 𝐢𝐟 (𝑠𝑦𝑚) ∶ 𝑃𝐴(𝐺, 𝑡𝑟′, 𝑘, 𝑃 , 𝐸𝑃 );
27

28 𝑣𝑜𝑖𝑑 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒_𝑃𝐴(𝐺, 𝑘, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠, 𝐴):
29 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡(𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ∈ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠):
30 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡(𝑣 ∈ 𝑉 (𝐺)):
31 𝑃𝐴(𝐺, {𝑣}, 𝑘, 𝑔𝑒𝑡𝐸𝑃 (𝑝𝑎𝑡𝑡𝑒𝑟𝑛), 𝐴);

Algorithm 1 depicts the implementation of subgraph enumeration 
for both the enumeration paradigms: pattern-oblivious (𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒_𝑃𝑂) 
and pattern-aware (𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒_𝑃𝐴). In both algorithms, we use the term 
candidate to represent vertices belonging to the neighborhood of the 
current traversal. In the pattern-oblivious approach (PO function), all 
vertices in the neighborhood of the traversal are used to create can-
didates regardless of the desired pattern. To eliminate automorphisms, 
custom canonicality-checking algorithms are applied in each candidate 
(line 8). Custom pattern functions are required to keep only traver-
sals matching the pattern (line 9), and these functions usually rely 
on subgraph isomorphism tests. Subgraph enumeration continues for 
canonical candidates matching the pattern (line 10) as long as a traver-
sal does not reach the limit size (line 2). In this paradigm, we need 
to enumerate all subgraphs starting from each vertex only once (lines 
14-15), as all subgraphs targeting the desired property are visited.

The pattern-aware approach (PA function) receives an extra param-
eter: a pre-processed exploration plan (𝐸𝑃 ). An 𝐸𝑃 is an array with 𝑘
vertices such that 𝐸𝑃 [𝑖] indicates which vertices of a traversal with 
𝑖 vertices must have their adjacency lists visited to generate candi-
3

dates matching the desired pattern. In this paradigm, the candidates 
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are generated using set-intersection operations [37] without the need 
of the pattern function 𝑃 . Lines 21-22 generate the initial set of candi-
dates using a subset of the neighborhood indicated by the exploration 
plan, and for each candidate (line 23), canonical candidates are kept 
applying custom straightforward comparisons (called symmetry break-

ing rules) of each candidate with specific vertices in the traversal (line 
24). As the pattern-oblivious paradigm, subgraph enumeration contin-
ues for canonical candidates matching the pattern (line 26) as long as 
a traversal does not reach the limit size (line 17). The pattern-aware 
paradigm starts an enumeration from each vertex of the graph for each 
pattern modeling the desired property (lines 29-31), thus incurring in 
more iterations over the graph than the pattern-oblivious paradigm.

The computational cost of the pattern-oblivious paradigm does not 
depend on customized exploration rules. Besides, in order to visit all 
subgraphs of size 𝑘, it requires one call to the 𝑃𝑂 function starting 
from each vertex/edge of the input graph regardless of the amount 
of patterns searched. This approach has three major drawbacks: it 
visits adjacency lists that do not have chances of matching the pat-
tern; the linear-time complexity of the general-purpose canonicality 
checking algorithms [45] applied over a high volume of candidates 
throughout enumeration; the need for constant isomorphism checking 
in each canonical candidate (the state-of-the-art isomorphism tools are 
designed for CPU [39,29]).

The pattern-aware approach visits only the adjacency lists that can 
generate candidates matching the pattern. Thus, it does not visit un-
necessary adjacency lists. After the intersection between the restricted 
set of adjacency lists, the candidates generated are inherently matched 
to the pattern, thus not requiring subgraph isomorphism algorithms. 
Besides, the symmetry-breaking rules are constant-time comparisons 
between the candidates and the vertices. This approach has two signifi-
cant drawbacks: its efficiency varies depending on the exploration plan, 
whose quality is hard to measure before the execution as the character-
istics of the dataset influence it; given a set of patterns to be searched 
in an input graph 𝐺, this paradigm requires one call to the 𝑃𝐴 func-
tion starting from each vertex/edge of the input graph for each pattern, 
and as not all the patterns are necessarily present in the graph, some of 
these calls represent a waste of computational time.

3. Related work

A significant amount of GPM research has been devoted to archi-
tecture-conscious implementations targeting various parallel processors 
(CPUs, GPUs and other accelerators) [11,1,32,40,17,30,34,46,26,2,5,
51,6]. However, these solutions do not provide a general-purpose envi-
ronment that allows the design of custom programs for different appli-
cation scenarios and thus, this section primarily reviews the literature 
on GPM systems.
GPM Systems for CPU. Arabesque [45] is one of the first GPM sys-
tems targeting distributed memory machines. It is pattern-oblivious and 
proposes a data structure (ODAG) to compress subgraphs in-memory 
to mitigate the memory demands of the BFS while it also employs 
load balancing. BFS and the pattern-oblivious design are frequently 
adopted together by out-of-core GPM systems. G-miner [8] and its suc-
cessor G-thinker [49] are distributed frameworks that use a task-based 
strategy for accelerating out-of-core graph mining computations, but 
they lack high-level abstractions for improved programming experi-
ence. RStream [47] is a relational GPM system that relies on expensive 
join operations to perform subgraph enumeration. Kaleido [52] is an 
out-of-core system. It proposes a novel compact data structure to store 
intermediate enumeration states (an improvement over Arabesques’s 
ODAG) with an I/O layer. The key contribution of Kaleido w.r.t. load 
imbalance is a strategy to predict the size of the subgraph candidates 
level by level and use this information to create subgraph partitions 
between threads. Although RStream and Kaleido are out-of-core, their 
design based on BFS limits the length of subgraphs feasible to be enu-

merated due to the inherent combinatorial explosion of GPM problems.
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Fractal [13] is a distributed memory system to use a DFS strategy and 
to focus on programming productivity. DFS reduces the materialization 
of the intermediate states of the enumeration and, consequently, the 
memory requirements. In order to mitigate load imbalance, an intra-
and inter-machine work-stealing mechanism is proposed. Whenever the 
patterns of subgraphs are known apriori, the search can be optimized 
via specific (pattern-oriented) execution plans.

LIGHT [44] adopts the pattern-aware approach and accelerates the 
computation with vectorized set intersection operations and by avoid-
ing redundant computations. Besides the fact that LIGHT is designed 
specifically for subgraph matching task, it remains unclear how to 
handle and to compose more complex applications relying on cus-
tomized filtering conditions and/or multi-pattern subgraph exploration. 
AutoMine [37] fills this gap by proposing an automated code genera-
tion for custom patterns that explicitly leverages loop-invariant proper-
ties of nested loops that arise from pre-determined exploration plans. 
Peregrine [27] proposes an interface that allows high-level program-
ming of GPM algorithms. It incorporates several optimizations such 
as avoiding redundant set operations [44] and minimum vertex cover 
matching [31]. Although Peregrine proposes a minimalist static load 
balancing scheme for shared-memory machines, it is unclear how to 
scale the strategy to GPUs.

GraphPi [42] and GraphZero [38] are pattern-aware systems that 
propose improvements for nested-loop-based (e.g., AutoMine [37]) im-
plementations of GPM algorithms. GraphPi handles a different challenge 
which is the cost of symmetry-breaking conditions used by exploration 
plans in pattern-aware systems. GraphZero, on the other hand, proposes 
improvements to the code generation model for GPM programs and 
thus. Both systems are DFS and exhibit a low-memory footprint, but 
neither optimize memory access or propose dynamic load balancing 
schemes appropriate for massive parallel systems on GPU for skewed 
workloads such as GPM problems. Pattern-aware GPM systems must 
enumerate querying patterns apriori and generate expĺoration plans in-
dividually for each pattern (e.g., in motif counting of subgraphs with 8 
vertices there are 11, 117 different patterns), which usually represents 
non-negligible overhead. To mitigate this issue, SumPA [19] proposes 
to merge generated patterns (and exploration plans) according to their 
similarities to reduce redundant computation. This solution, however, 
has limited impact.
GPM Systems for GPU. Pangolin [9] is the first GPM system to leverage 
GPUs. It uses a pattern-oblivious enumeration with BFS, which enables 
a Bulk Synchronous Parallel (BSP) model where subgraphs are mate-
rialized on GPU’s memory and redistributed among processing units at 
each step. Because of the BFS high memory demands, Pangolin can only 
search for small subgraphs.

Most pattern-aware GPUs systems handle a more simple and fun-
damental task in which the goal is to match a query graph (pattern) 
against the data graph. PBE [20] proposes an exploration for the sce-
narios where the data graph does not fit into GPU’s memory. PBE 
accomplishes this by using a customized graph partitioning scheme. 
VSGM [28] is build upon PBE’s ideas and improves it by optimizing 
partitions (bins) via fast heuristics that allow overlapping processing 
and partition generation. PBE and VSGM do not directly handle the op-
timization of memory access on GPU neither the imbalance challenge 
inherent of subgraph enumeration. Thus, they can not enumerate larger

subgraphs. However, our efficient GPU enumeration design could be 
enhanced by incorporating these partitioning schemes to handle larger 
graphs.

RPS [21] is a pattern-aware BFS system that leverages reuse of set 
intersections. This work is also complementary and orthogonal to ours 
– in fact, the routines proposed by RPS to optimize the search space 
exploration of a specific pattern can be implemented through our op-
timized warp-centric primitives, ensuring coalesced memory accesses 
and balanced executions.

PARSEC [14] implements subgraph enumeration via pattern-aware 
4

and a hybrid BFS/DFS exploration. It matches the first two vertices of a 
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pattern using BFS to materialize a set of traversals and generate parallel 
GPU tasks. Each parallel task is responsible for independently enumer-
ating a subset of subgraphs via a DFS exploration. Although this static 
workload generation and distribution may be effective for small sub-
graphs, imbalance becomes critical as larger subgraphs are processed. 
Our load balancing strategy is dynamic and do not suffer from this prob-
lem, as it reacts to imbalance at run-time.

STMatch [48] considers a slightly different subgraph enumeration 
problem that does not break symmetries. Rather than eliminating au-
tomorphisms, STMatch visits the same subgraph several times, and 
unnecessary results are removed using the theoretical multiplicity of 
the pattern. It proposes a hierarchical work-stealing mechanism to bal-
ance the load on one or multiple GPUs.

G2Miner [7] is a recent pattern-aware GPU system, a successor (and 
improved version) of Pangolin [9]. G2Miner provides a warp-centric 
scheme to perform set-intersection operations and improve divergences 
and memory coalescence, but only this operation is addressed and the 
rest of the enumeration pipeline does not benefit from it. Thus, gains 
obtained with this strategy are small compared to their baseline im-
plementation (2×). For example, our warp-centric enumeration scheme 
achieved an average speedup of 67× due to increased memory coales-
cence and lockstep execution. Besides, the system inherits all limitations 
of pure pattern-aware systems.

In general, while GPU GPM systems attained notable performance 
gains, these works have not fully addressed all critical challenges of 
subgraph enumeration targeting this architecture (combinatorial explo-
sion, memory uncoalescence, divergences, load imbalance and flexible 
enumeration paradigm). The DuMato system proposed here deals with 
all these challenges and can efficiently mine large subgraphs. More-
over, DuMato is extensible in the sense that it is build over a set of 
representative GPU primitives, reducing the effort to incorporate mul-
tiple optimizations in the same system (even from different paradigms) 
and making the modeling of algorithms more productive.

4. Strategies for efficient high-level subgraph enumeration on 
GPUs

This section presents our optimization strategies to mitigate the 
main challenges for subgraph enumeration on GPUs: the high mem-
ory demand generated by combinatorial explosion; the memory unco-
alescence, divergences and load imbalance generated by irregularity; 
the flexibility in the choice of the enumeration paradigm. The DFS-wide 
traversal strategy ensures that memory demand is bounded and adjusted 
based on the choice of the enumeration paradigm. DuMato, our high-
level warp-centric subgraph enumeration system, also mitigates mem-

ory uncoalescence and divergences by providing regular execution and 
memory access patterns, and provides a flexible API to allow the im-
plementation of GPM algorithms using both enumeration paradigms 
(pattern-oblivious and pattern-aware). Our warp-level load balancing miti-
gates the load imbalance.

4.1. DFS-wide enumeration strategy

DFS-wide is our novel strategy to traverse a graph on the GPU and 
keep the intermediate states needed for both enumeration paradigms. 
DFS-wide alternates between BFS and DFS phases to provide regular 
execution with affordable memory use. Fig. 2 depicts the enumeration 
lattice generated to visit the subgraph {2, 3, 4, 6} using BFS, DFS, and 
DFS-wide. In BFS, all intermediate traversals throughout enumeration 
are materialized. This allows regular memory accesses, but the combi-
natorial explosion of stages makes BFS memory demand too high. DFS 
generates the minimum amount of intermediate states. Despite its low 
memory consumption, the memory access pattern of DFS is more sparse 
and deteriorates locality.

Different from other systems that use a DFS-like traversal strat-

egy [14,48], the memory consumption of our DFS-wide strategy is ad-
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Fig. 2. BFS, DFS, and DFS-wide strategies.
Fig. 3. Traversal Enumeration data structure used for DFS-wide exploration.

justed according to the enumeration paradigm chosen for enumeration. 
Besides, it provides a cache that enables the reuse of intermediate states, 
which constitutes the basis for many optimizations proposed by state-of-
the-art pattern-aware systems. To support such flexibility of paradigms 
while still ensuring an efficient use of the GPU, we propose an efficient 
data structure for maintaining the state of a DFS exploration of traver-
sals. Fig. 3 depicts this data structure considering a snapshot using the 
traversal 𝑡𝑟 = {𝑎, 𝑒}.

The traversal enumeration data structure (TE) Both paradigms use a 
structure called 𝑇𝐸 (Traversal Enumeration) to keep track of all enu-
meration state required by the DFS-based subgraph exploration, i.e., 
the set of vertex/edge extensions used to produce larger traversals (sub-
graphs). The attribute 𝑙𝑒𝑛 stores the current size of the traversal. The 
attribute 𝑡𝑟 is an array with 𝑘 −1 integers to store the ids of the vertices 
in the current traversal (the last id of the traversal is not materialized 
to save memory, but it is combined with the remaining of the traver-
sal for aggregation as usual). The attribute 𝑒𝑔 is an array with 𝑘 − 1
booleans such that 𝑇𝐸.𝑒𝑔[𝑖] indicates whether the extensions of the 
traversal 𝑇𝐸.𝑡𝑟[0 ⋯ 𝑖] have been generated.

The extensions are modeled by a set of 𝑘 − 1 arrays such that 
𝑇𝐸.𝑒𝑥𝑡[𝑖] (𝑖 < 𝑘 −2) stores the set of extensions generated by the traver-
sal 𝑇𝐸.𝑡𝑟[0 ⋯ 𝑖]. For example, 𝑇𝐸.𝑒𝑥𝑡[1] stores the extensions gener-
ated by 𝑇𝐸.𝑡𝑟[0, 1] ({𝑎, 𝑒}). The 𝑠𝑖𝑧𝑒𝐸𝑥𝑡𝐼𝑛𝑖 array contains 𝑘 − 1 posi-
5

tions such that any 𝑇𝐸.𝑠𝑖𝑧𝑒𝐸𝑥𝑡𝐼𝑛𝑖[𝑖] stores the initial number set of ex-
Table 1

Worst-case memory consumption of enumeration 
paradigms.

Data structure
Paradigm

Pattern-oblivious Pattern-aware

TE.len 1 1
TE.tr 𝑘− 1 𝑘− 1
TE.eg 𝑘− 1 𝑘− 1
TE.ext

∑𝑘−1
𝑖=1 𝑖 ×𝑚𝑎𝑥𝑑(𝐺) (𝑘− 1) ×𝑚𝑎𝑥𝑑(𝐺)

TE.cache − (𝑘− 1) ×𝑚𝑎𝑥𝑑(𝐺)
TE.sizeExtIni 𝑘− 1 𝑘− 1
TE.sizeExtCur 𝑘− 1 𝑘− 1

total 𝑂(𝑘2 ×𝑚𝑎𝑥𝑑(𝐺)) 𝑂(𝑘 ×𝑚𝑎𝑥𝑑(𝐺))

tensions in 𝑇𝐸.𝑒𝑥𝑡[𝑖], and 𝑇𝐸.𝑠𝑖𝑧𝑒𝐸𝑥𝑡𝐶𝑢𝑟[𝑖] stores the actual amount 
of extensions in 𝑇𝐸.𝑒𝑥𝑡[𝑖]. We use the last extension of 𝑇𝐸.𝑒𝑥𝑡[𝑖] to 
move forward in the enumeration, and the removal of this extension 
is implemented as a decrement in the 𝑇𝐸.𝑠𝑖𝑧𝑒𝐸𝑥𝑡𝐶𝑢𝑟[𝑖]. The infor-
mation on 𝑇𝐸.𝑠𝑖𝑧𝑒𝐸𝑥𝑡𝐼𝑛𝑖𝑡[0 ⋯ 𝑖] ensures that original extensions can 
be reused and retrieved even after removals indicated by decrements 
on 𝑇𝐸.𝑠𝑖𝑧𝑒𝐸𝑥𝑡𝐼𝑛𝑖[0 ⋯ 𝑖]. Indeed, for many patterns, it is beneficial to 
cache intermediate extensions to avoid repeated and redundant accesses 
to the adjacency lists of the traversal vertices 𝑇𝐸.𝑡𝑟[0 ⋯ 𝑘 − 2]. To en-
able this optimization, we keep a set of 𝑘 − 1 arrays (𝑐𝑎𝑐ℎ𝑒) to store 
this information whenever the exploration plan of a pattern indicates 
the possibility of reuse (an example is presented in Algorithm 3).

The storage of the intermediate extensions (𝑒𝑥𝑡) and its caching 
(𝑐𝑎𝑐ℎ𝑒) dominate the memory cost of the 𝑇𝐸 data structure. The 
pattern-oblivious paradigm does not use caching and the extensions 
are generated regardless of a pattern. For example, 𝑇𝐸.𝑒𝑥𝑡[1] is allo-
cated to have enough space to store the worst-case scenario where the 
two vertices in the traversal have the maximum degree of the graph 
(𝑚𝑎𝑥𝑑(𝐺)). Thus, 𝑇𝐸.𝑒𝑥𝑡[1] has 2 × 𝑚𝑎𝑥𝑑(𝐺) positions. This alloca-
tion requirement is repeated until 𝑇𝐸.𝑒𝑥𝑡[𝑘 − 2], which leads to a total 
amount of 

∑𝑘−2
𝑖=0 𝑖 × 𝑚𝑎𝑥𝑑(𝐺) integer positions to store the extensions 

in this paradigm. In the pattern-aware paradigm, the extensions are ex-
tracted from the intersection of adjacency lists. Thus it requires at most 
𝑚𝑎𝑥𝑑(𝐺) positions for any 𝑇𝐸.𝑒𝑥𝑡[𝑖], and the same amount is required 
for 𝑇𝐸.𝑐𝑎𝑐ℎ𝑒[𝑖]. Thus, the total amount of integer positions to store 
the extensions in this paradigm is 

∑𝑘−2
𝑖=0 2 ×𝑚𝑎𝑥𝑑(𝐺). The 𝑠𝑖𝑧𝑒𝐸𝑥𝑡𝐼𝑛𝑖𝑡, 

𝑠𝑖𝑧𝑒𝐸𝑥𝑡𝐶𝑢𝑟 and 𝑠𝑖𝑧𝑒𝐶𝑎𝑐ℎ𝑒 arrays contain 𝑘 − 1 positions.
Table 1 depicts the worst-case memory consumption of one enumer-

ation task using our DFS-wide strategy for each enumeration paradigm. 
DFS-wide fulfills the memory requirements to execute subgraph enu-
meration on a GPU with 12 GB of memory to visit subgraphs up to 
31 and 11 using the pattern-aware and pattern-oblivious paradigms, 
respectively, for any dataset with maximum degree up to 16 K (e.g., 
LiveJournal, Pokec) and using the recommended number of parallel 

enumeration tasks presented in Section 5 (102400 threads).
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Table 2

DuMato API.

Functions Phase Scope

[CT] control(TE) Control
Algorithm-independent

[MV] move(TE) Move

[EX] extend(TE, m_ext, m_cache, m_adj, op) Extend

Algorithm-specific
[FL] filter(TE, P, args) Filter
[A1] aggregate_counter(TE)

Aggregate[A2] aggregate_pattern(TE)

[A3] aggregate_store(TE)

[CC] cache(TE) Extend Optimization
Fig. 4. DuMato execution workflow.

4.2. DuMato: an efficient high-level subgraph enumeration system for GPUs

We describe in this section our subgraph enumeration system called 
DuMato, that supports high-level customizable implementations of GPM 
algorithms on GPU. DuMato wraps around the DFS-wide strategy and 
a set of novel strategies and optimizations designed for efficient GPM 
processing on GPU.

4.2.1. Execution workflow and programming API

DuMato adopts the filter-process model [45] depicted on Fig. 4. The 
traversal 𝑡𝑟 is the input for the Control phase, which decides whether 
the enumeration should proceed or stop (|𝑡𝑟| = 0). In case it proceeds, 
the Extend phase assigns a subset of 𝑁(𝑡𝑟) as its initial set of valid 
extensions. The Filter phase is an optional phase that keeps only the ex-
tensions that fulfill the desired property 𝑃 . We optimized our previous 
execution workflow [18] such that invalid extensions are removed from 
the extensions array during the Filter phase, thus eliminating the Com-

pact phase from the workflow. This optimization reduces the number of 
iterations through the extensions array and improves the performance. 
If the traversal 𝑡𝑟 reaches size 𝑘, the Aggregate phase produces the out-
put of the algorithm (|𝑡𝑟| = 𝑘). The Move phase receives 𝑡𝑟 and decides 
whether to move forward (there are unprocessed extensions in 𝑡𝑟) or 
backward (all extensions of 𝑡𝑟 were processed). The output of this phase 
is a modified version of 𝑡𝑟 that serves as input to the Control phase. The 
enumeration continues until all traversals that can be generated from 
the input traversal 𝑡𝑟 are visited. The primitives of extend, filter, aggre-

gate, and move phases are implemented within the same kernel call. 
Device-wide synchronizations are required only by the control phase 
whenever it detects the need for a load-balancing step. In that case, the 
CPU copies the enumeration data structures and reorganizes them by 
applying our load-balancing algorithm, copying the data back to GPU, 
and rescheduling the enumeration kernel back to GPU.

Table 2 presents DuMato’s API with functions categorized per work-
flow phase. Any GPM algorithm uses Control and Move to manage the 
workflow cycle. Thus, they are algorithm-independent. The other phases 
are algorithm-specific as they are optional or need parameters depend-
ing on the algorithm. Each function receives the 𝑇𝐸 argument (with 
runtime information about active traversals) and additional parame-
ters. The Control phase ([CT]) allows runtime checking to determine 
whether the enumeration of a traversal should continue. The Move

phase ([MV]) uses the size of current traversal and its extensions to 
6

decide moving forward or backward.
The Extend phase ([EX]) receives three masks: 𝑚_𝑒𝑥𝑡, 𝑚_𝑐𝑎𝑐ℎ𝑒 and 
𝑚_𝑎𝑑𝑗. Given any 𝑖 < 𝑘 − 1, the i-th lowest bit of 𝑚_𝑎𝑑𝑗, 𝑚_𝑒𝑥𝑡 and 
𝑚_𝑐𝑎𝑐ℎ𝑒 indicates whether 𝑇𝐸.𝑒𝑥𝑡[𝑖], 𝑇𝐸.𝑐𝑎𝑐ℎ𝑒[𝑖] and the adjacency of 
𝑇𝐸.𝑡𝑟[𝑖] will be used to generate the current extensions, respectively. 
The last argument (𝑜𝑝) is a function pointer that receives 𝑇𝐸, 𝑚_𝑒𝑥𝑡, 
𝑚_𝑐𝑎𝑐ℎ𝑒 and 𝑚_𝑎𝑑𝑗, and performs the needed operations to generate the 
current extensions using the required arrays. We provide two standard 
𝑜𝑝 functions: 𝑢𝑛𝑖𝑜𝑛 (for pattern-oblivious algorithms) and 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 (for 
pattern-aware paradigms).

The Filter phase ([FL]) receives a user-defined function pointer 𝑃 , 
which models the property 𝑃 defined in terms of subgraphs, along 
with its arguments (𝑎𝑟𝑔𝑠). Filter calls the 𝑃 function for each exten-
sion of the current traversal and removes those that do not satisfy 𝑃 . 
We may use 𝑃 to design custom subgraph filters for canonical candidate 
generation [45], density [35], subgraph matching [22], among others. 
The remaining functions ([A1], [A2], and [A3]) produce the outputs 
of the algorithms. These functions count the valid traversals visited 
throughout enumeration ([A1]), the number of valid traversals visited 
for each pattern ([A2]), or store the visited traversals for further down-
stream processing [12,25] ([A3]). We also provide an utility function 
𝑐𝑎𝑐ℎ𝑒(𝑇𝐸) ([CC]), which may be called at any point of the execution 
workflow to copy the current set of extensions (𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1]) 
into the cache (𝑇𝐸.𝑐𝑎𝑐ℎ𝑒[𝑇𝐸.𝑙𝑒𝑛 − 1]) for further reuse.

4.2.2. Use case algorithms developed in DuMato

This section presents three representative GPM algorithms in Du-
Mato: clique counting, subgraph matching and motif counting. Clique count-

ing counts the number of cliques with 𝑘 vertices in 𝐺. It represents 
algorithms that search for custom patterns with direct reuse of the ex-
tensions. Fig. 5a depicts the exploration plan used to visit cliques with 
4 vertices. The vertex numbers represent the order in which the pattern 
vertices will be matched in the input graph. Since all vertices in a clique 
are connected, the order we visit them does not change the efficiency 
of enumeration. Each vertex has three masks associated with the use of 
extensions, cache and adjacency lists: 𝑚_𝑒𝑥𝑡, 𝑚_𝑐𝑎𝑐ℎ𝑒 and 𝑚_𝑎𝑑𝑗. Given 
any 𝑖 < 3, the enumeration aims to generate 𝑇𝐸.𝑒𝑥𝑡[𝑖] (underlined in 
Fig. 5a) using the extensions, cache and adjacency lists indicated by 
the associated masks. For the clique pattern, in order to generate any 
𝑇𝐸.𝑒𝑥𝑡[𝑖], we need the computed extensions from the previous traversal 
𝑇𝐸.𝑒𝑥𝑡[𝑖 −1] and the adjacency of the new vertex 𝑇𝐸.𝑡𝑟[𝑖]. As these sets 
are the only needed to generate the current extensions in clique, there 
is no need for copying 𝑇𝐸.𝑒𝑥𝑡[𝑖 − 1] to cache and the 𝑚_𝑐𝑎𝑐ℎ𝑒 masks 
are set to zero. For example, to generate 𝑇𝐸.𝑒𝑥𝑡[1], the bit 𝑚_𝑒𝑥𝑡[0] is 
set to indicate the use of 𝑇𝐸.𝑒𝑥𝑡[0] and the bit 𝑚_𝑎𝑑𝑗[1] is set to indi-
cate the use of the adjacency of 𝑇𝐸.𝑡𝑟[1]. The set intersection operation 
is applied to generate any 𝑇𝐸.𝑒𝑥𝑡[𝑖] up to the desired size.

Algorithm 2 presents the implementation of clique counting, and de-
picts the skeleton code used to implement GPM algorithms on DuMato. 
It is implemented in a loop-based so that the enumeration of traversals 
continues while the termination condition has not been reached (line 
5). Extensions are generated whenever necessary (line 7), aggregation 
primitives are called when the size of visited subgraphs reaches the tar-
get size (line 11), and at the end of each loop iteration (line 13) DuMato 
moves to the next recursion step (forward/backward). These are com-

mon steps in GPM algorithms. The rest of the code is algorithm-specific 
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Fig. 5. DuMato’s representation of pattern-aware exploration plans.
(marked with icon ). Lines 2 − 4 set the masks of clique counting 
to generate any 𝑇𝐸.𝑒𝑥𝑡[𝑖]. The Extend phase (line 8) intersects the re-
quired sets to produce the current extensions, generating only those that 
are cliques. The filter implements the symmetry-breaking rule to elim-
inate automorphism (line 9). For cliques, the symmetry breaking rule 
ensures that new vertex added to the traversal must be greater than 
the last one. The Aggregate phase (line 11) increments the counting by 
accumulating the size of the extensions array.

Algorithm 2: Clique counting algorithm.

1 𝑣𝑜𝑖𝑑 𝑐𝑙𝑖𝑞𝑢𝑒_𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔_4(𝑇𝐸)
2 𝐦_𝐞𝐱𝐭 ← [𝟎𝟎𝟎,𝟎𝟎𝟏,𝟎𝟏𝟎];
3 𝐦_𝐜𝐚𝐜𝐡𝐞← [𝟎𝟎𝟎,𝟎𝟎𝟎,𝟎𝟎𝟎];
4 𝐦_𝐚𝐝𝐣← [𝟎𝟎𝟏,𝟎𝟏𝟎,𝟏𝟎𝟎];
5 𝑤ℎ𝑖𝑙𝑒(𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑇𝐸)):
6 𝑙𝑎𝑠𝑡 ← 𝑇𝐸.𝑙𝑒𝑛 − 1;
7 𝑖𝑓 (!𝑇𝐸.𝑒𝑔[𝑙𝑎𝑠𝑡]):
8 𝐞𝐱𝐭𝐞𝐧𝐝(𝐓𝐄,𝐦_𝐞𝐱𝐭[𝐥𝐚𝐬𝐭],𝐦_𝐜𝐚𝐜𝐡𝐞[𝐥𝐚𝐬𝐭],𝐦_𝐚𝐝𝐣[𝐥𝐚𝐬𝐭],&𝐢𝐧𝐭𝐞𝐫);
9 𝐟 𝐢𝐥𝐭𝐞𝐫(𝐓𝐄, &𝐥𝐨𝐰𝐞𝐫_𝐭𝐡𝐚𝐧 , 𝐓𝐄.𝐭𝐫[𝐥𝐚𝐬𝐭]);

10 𝑖𝑓 (𝑇𝐸.𝑙𝑒𝑛 == 𝑘 − 1):
11 𝐚𝐠𝐠𝐫𝐞𝐠𝐚𝐭𝐞_𝐜𝐨𝐮𝐧𝐭𝐞𝐫(𝐓𝐄);
12 𝑚𝑜𝑣𝑒(𝑇𝐸);

The subgraph matching represents GPM algorithms that search for 
custom patterns which allow different exploration plans that may take 
advantage of reuse through caching of snapshots of the extensions 
set. In order to depict its implementation on DuMato, we use the 
chordal pattern with 4 vertices, and Fig. 5b shows the exploration plan 
adopted. The generation of 𝑇𝐸.𝑒𝑥𝑡[0] requires only the adjacency list 
of 𝑇𝐸.𝑡𝑟[0], thus only 𝑚_𝑎𝑑𝑗[0] is set. The generation of 𝑇𝐸.𝑒𝑥𝑡[1] re-
quires the intersection of the adjacency lists of 𝑇𝐸.𝑡𝑟[0] and 𝑇𝐸.𝑡𝑟[1], 
thus the bits 𝑚_𝑎𝑑𝑗[0] and 𝑚_𝑎𝑑𝑗[1] are set. Before applying symmetry-
breaking to 𝑇𝐸.𝑒𝑥𝑡[1], we copy this set to 𝑇𝐸.𝑐𝑎𝑐ℎ𝑒[1], as it will be 
reused to generate 𝑇𝐸.𝑒𝑥𝑡[2]. The generation of 𝑇𝐸.𝑒𝑥𝑡[2] requires 
again the intersection of the adjacency lists of 𝑇𝐸.𝑡𝑟[0] and 𝑇𝐸.𝑡𝑟[1], 
which was cached previously. Thus, we need only the set 𝑇𝐸.𝑐𝑎𝑐ℎ𝑒[1]
to generate 𝑇𝐸.𝑒𝑥𝑡[2], indicated by the bit 𝑚_𝑐𝑎𝑐ℎ𝑒[1]. The code is pre-
sented in Algorithm 2 for the chordal pattern with 4 vertices. The masks 
(lines 2-4) are set according to the exploration plan in Fig. 5b. The set 
intersection operation of specific sets guarantee only extensions match-
ing the chordal pattern (line 8). We call the cache primitive to store the 
extensions of 𝑇𝐸.𝑒𝑥𝑡[1] for reuse in 𝑇𝐸.𝑒𝑥𝑡[2]. The only filter needed 
is the one that implements the symmetry-breaking rule to eliminate au-
tomorphisms for the chordal pattern (line 10).

The motif counting algorithm (Algorithm 4) counts the occurrence 
of each possible pattern with 𝑘 vertices in an input graph 𝐺, thus rep-
resenting GPM algorithms that search for multiple patterns. Note that, 
different from the pattern-aware subgraph matching, this implementa-
tion is pattern-oblivious and does not rely on custom GPU kernels for 
each pattern, thus the same kernel can be used for any 𝑘. As any pattern 
may be visited during enumeration, there is no reuse of intermediate ex-
tensions, and all masks in 𝑚_𝑒𝑥𝑡 (line 2) and 𝑚_𝑐𝑎𝑐ℎ𝑒 (line 3) are set 
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to zero. Given any 𝑖 < 𝑘 − 2, the mask in 𝑚_𝑎𝑑𝑗[𝑖] (line 4) indicates 
Algorithm 3: Subgraph matching of the chordal square.

1 𝑣𝑜𝑖𝑑 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔_𝑐ℎ𝑜𝑟𝑑𝑎𝑙_4(𝑇𝐸)
2 𝐦_𝐞𝐱𝐭 ← [𝟎𝟎𝟎,𝟎𝟎𝟎,𝟎𝟎𝟎];
3 𝐦_𝐜𝐚𝐜𝐡𝐞← [𝟎𝟎𝟎,𝟎𝟎𝟎,𝟎𝟏𝟎];
4 𝐦_𝐚𝐝𝐣← [𝟎𝟎𝟏,𝟎𝟏𝟏,𝟎𝟎𝟎];
5 𝑤ℎ𝑖𝑙𝑒(𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑇𝐸)):
6 𝑙𝑎𝑠𝑡 ← 𝑇𝐸.𝑙𝑒𝑛 − 1;
7 𝑖𝑓 (!𝑇𝐸.𝑒𝑔[𝑙𝑎𝑠𝑡]):
8 𝐞𝐱𝐭𝐞𝐧𝐝(𝐓𝐄,𝐦_𝐞𝐱𝐭[𝐥𝐚𝐬𝐭],𝐦_𝐜𝐚𝐜𝐡𝐞[𝐥𝐚𝐬𝐭],𝐦_𝐚𝐝𝐣[𝐥𝐚𝐬𝐭],&𝐢𝐧𝐭𝐞𝐫);
9 𝐢𝐟 (𝐓𝐄.𝐥𝐞𝐧 == 𝟏) ∶ 𝐜𝐚𝐜𝐡𝐞(𝐓𝐄);

10 𝐟 𝐢𝐥𝐭𝐞𝐫(𝐓𝐄,&𝐬𝐲𝐦𝐦𝐞𝐭𝐫𝐲_𝐜𝐡𝐨𝐫𝐝𝐚𝐥_𝟒, [ ]);
11 𝑖𝑓 (𝑇𝐸.𝑙𝑒𝑛 == 𝑘 − 1):
12 𝐚𝐠𝐠𝐫𝐞𝐠𝐚𝐭𝐞_𝐩𝐚𝐭𝐭𝐞𝐫𝐧(𝐓𝐄);
13 𝑚𝑜𝑣𝑒(𝑇𝐸);

that all the adjacency lists of vertices in 𝑇𝐸.𝑡𝑟[0 ⋯ 𝑖] are used to gen-
erate 𝑇𝐸.𝑒𝑥𝑡[𝑖]. In the case of the current extensions have not been 
generated (line 7), the Extend phase of the algorithm (line 8) is pattern-
oblivious and performs the union of the adjacency lists of all vertices in 
the traversal to produce the current set of extensions. The Filter phase 
is implemented in one step, and the function pointer is_canonical (called 
in line 9) keeps only the canonical candidates using a generic canoni-
cal filtering algorithm [45] to eliminate automorphisms. Finally, if the 
traversal reaches the size of 𝑘 − 1 (line 10), the Aggregate phase (line 
11) converts each extension to its pattern and accumulates the counting 
for each pattern found.

Algorithm 4: Motif counting algorithm.

1 𝑣𝑜𝑖𝑑 𝑚𝑜𝑡𝑖𝑓 _𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔(𝑇𝐸)
2 𝐦_𝐞𝐱𝐭 ← [𝟎𝟎...𝟎𝟎,𝟎𝟎...𝟎𝟎,⋯ ,𝟎𝟎...𝟎𝟎];
3 𝐦_𝐜𝐚𝐜𝐡𝐞← [𝟎𝟎...𝟎𝟎,𝟎𝟎...𝟎𝟎,⋯ ,𝟎𝟎...𝟎𝟎];
4 𝐦_𝐚𝐝𝐣← [𝟎𝟎...𝟎𝟏,𝟎𝟎...𝟏𝟏,𝟎𝟎...𝟏𝟏𝟏⋯ ,𝟏𝟏...𝟏𝟏];
5 𝑤ℎ𝑖𝑙𝑒(𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑇𝐸)):
6 𝑙𝑎𝑠𝑡 ← 𝑇𝐸.𝑙𝑒𝑛 − 1;
7 𝑖𝑓 (!𝑇𝐸.𝑒𝑔[𝑙𝑎𝑠𝑡]):
8 𝐞𝐱𝐭𝐞𝐧𝐝(𝐓𝐄,𝐦_𝐞𝐱𝐭[𝐥𝐚𝐬𝐭],𝐦_𝐜𝐚𝐜𝐡𝐞[𝐥𝐚𝐬𝐭],𝐦_𝐚𝐝𝐣[𝐥𝐚𝐬𝐭],&𝐮𝐧𝐢𝐨𝐧);
9 𝐟 𝐢𝐥𝐭𝐞𝐫(𝐓𝐄,&𝐢𝐬_𝐜𝐚𝐧𝐨𝐧𝐢𝐜𝐚𝐥, []);

10 𝑖𝑓 (𝑇𝐸.𝑙𝑒𝑛 == 𝑘 − 1):
11 𝐚𝐠𝐠𝐫𝐞𝐠𝐚𝐭𝐞_𝐩𝐚𝐭𝐭𝐞𝐫𝐧(𝐓𝐄);
12 𝑚𝑜𝑣𝑒(𝑇𝐸);

4.2.3. Warp-centric design

The warp-centric programming model [24] is used in irregular al-
gorithms to improve their execution regularity. In our design, a warp 
receives a traversal for processing, and threads within a warp alternate 
between SIMD and SISD phases throughout the execution workflow. 
Our goal with this model is to minimize execution divergence and to 
exploit the opportunities of parallelism and regular memory access en-
abled by the DFS-wide. The phases of DuMato’s enumeration workflow 
were designed based on three main warp-centric primitives: find_one, 

find_many, and write, discussed next.
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Core primitives. In essence, the core primitives are used to search for 
values in the adjacency lists and extensions, and are used during the 
enumeration phases and to implement specific 𝑜𝑝 functions (depicted 
in Table 2). The find_one is employed when threads within a warp need 
to find whether the same value 𝑥 is in an array 𝑣 (Algorithm 5). Our de-
fault implementation has a linear-time complexity, as it does not assume 
an ordering of the input array. However, we also provide a log-time im-
plementation whenever the array is ordered, thus reducing the overall 
complexity. The most important use of find_one primitive is during the 
subgraph induction, when threads within a warp induce a traversal and 
need to check whether one extension is in each adjacency list of the 
vertices in the traversal. The variable found_local stores whether the 𝑥
was found in 𝑣 by the current thread, and variable found_global stores 
whether any thread within a warp found 𝑥 in 𝑣. The main loop (line 
3) iterates through 𝑣 in parallel (32 is the warp size) and each thread 
within a warp receives a different value 𝑣 to compare with 𝑥 using coa-
lesced memory requests to access 𝑣 (line 4). Any_sync (line 5) is a warp 
exchange primitive used to exchange variable found_local. In case any 
found_local variable is not 0, any_sync returns 1 for all threads within a 
warp and sets 1 to found_global for all threads. Otherwise, found_global

is set to 0 and the search continues.

Algorithm 5: Primitive find_one.

1 𝑖𝑛𝑡 𝑓𝑖𝑛𝑑_𝑜𝑛𝑒(𝑥, 𝑣, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑)∶
2 𝑓𝑜𝑢𝑛𝑑_𝑙𝑜𝑐𝑎𝑙← 𝑓𝑜𝑢𝑛𝑑_𝑔𝑙𝑜𝑏𝑎𝑙← 0 ;
3 𝑓𝑜𝑟 (𝑝𝑜𝑠 ← 𝑠𝑡𝑎𝑟𝑡 + 𝑙𝑎𝑛𝑒 ; 𝑝𝑜𝑠 < 𝑒𝑛𝑑 && !𝑓𝑜𝑢𝑛𝑑_𝑔𝑙𝑜𝑏𝑎𝑙 ; 𝑝𝑜𝑠+= 32)∶
4 𝑓𝑜𝑢𝑛𝑑_𝑙𝑜𝑐𝑎𝑙← 𝑣[𝑝𝑜𝑠] ← 𝑥;
5 𝑓𝑜𝑢𝑛𝑑_𝑔𝑙𝑜𝑏𝑎𝑙← 𝑎𝑛𝑦_𝑠𝑦𝑛𝑐(𝑓𝑜𝑢𝑛𝑑_𝑙𝑜𝑐𝑎𝑙);
6 return 𝑓𝑜𝑢𝑛𝑑_𝑔𝑙𝑜𝑏𝑎𝑙;

The find_many is used when threads within a warp need to find dif-
ferent values in an array 𝑣 (Algorithm 6). This primitive is used by 
warps to find values in the extensions and in the traversal in paral-
lel, mainly in the extend and filter phases. The algorithm is similar to 
find_one, but with two crucial differences: variable found_global stores a 
mask such that the i-th bit stores whether the i-th thread in the warp 
has already found its value in 𝑣, and is built using the ballot_sync warp 
exchange primitive; the main loop continues for all threads within a 
warp as long as there is at least one thread that still has not found its 
value in 𝑣. Although we could propose a log-time implementation for 
find_many in the cases where the input array is ordered, this would gen-
erate plenty of extra memory transactions, as each thread of the warp 
searches for a different value and would demand different regions of 
the input array at the execution. Thus, for this primitive, we provide 
only a linear-time implementation.

Algorithm 6: Primitive find_many.

1 𝑖𝑛𝑡 𝑓𝑖𝑛𝑑_𝑚𝑎𝑛𝑦(𝑣𝑎𝑙𝑢𝑒, 𝑣, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑)∶
2 𝑓𝑜𝑢𝑛𝑑_𝑙𝑜𝑐𝑎𝑙← 𝑓𝑜𝑢𝑛𝑑_𝑔𝑙𝑜𝑏𝑎𝑙← 0;
3 𝑝𝑜𝑠 ← 𝑠𝑡𝑎𝑟𝑡;
4 𝑓𝑜𝑟 ( ; 𝑝𝑜𝑠 < 𝑒𝑛𝑑 && 𝑓𝑜𝑢𝑛𝑑_𝑔𝑙𝑜𝑏𝑎𝑙 != 0xffffffff ; 𝑠𝑡𝑎𝑟𝑡++)∶
5 𝑓𝑜𝑢𝑛𝑑_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑣[𝑝𝑜𝑠] == 𝑣𝑎𝑙𝑢𝑒;
6 𝑓𝑜𝑢𝑛𝑑_𝑙𝑜𝑐𝑎𝑙← 𝑓𝑜𝑢𝑛𝑑_𝑙𝑜𝑐𝑎𝑙 || 𝑓𝑜𝑢𝑛𝑑_𝑐𝑢𝑟𝑟𝑒𝑛𝑡;
7 𝑓𝑜𝑢𝑛𝑑_𝑔𝑙𝑜𝑏𝑎𝑙← 𝑏𝑎𝑙𝑙𝑜𝑡_𝑠𝑦𝑛𝑐(𝑓𝑜𝑢𝑛𝑑_𝑙𝑜𝑐𝑎𝑙);
8 return 𝑓𝑜𝑢𝑛𝑑_𝑙𝑜𝑐𝑎𝑙;

The write primitive (Algorithm 7) is used when threads within a 
warp have different values to be written in an array 𝑣, but some may be 
invalid due to previous filtering. This primitive reorganizes 𝑣 and valid 
values are written at the beginning of 𝑣 and invalid ones at the end of 
𝑣.

The function receives the array 𝑣, the starting position in 𝑣 where 
8

values should be written, the value itself, and a boolean indicating 
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Algorithm 7: Primitive write.

1 𝑣𝑜𝑖𝑑 𝑤𝑟𝑖𝑡𝑒(𝑣, 𝑠𝑡𝑎𝑟𝑡, 𝑣𝑎𝑙𝑢𝑒, 𝑣𝑎𝑙𝑖𝑑)∶
2 𝑣𝑎𝑙𝑖𝑑𝑠 ← 𝑏𝑎𝑙𝑙𝑜𝑡_𝑠𝑦𝑛𝑐(𝑣𝑎𝑙𝑖𝑑);
3 𝑎𝑚𝑜𝑢𝑛𝑡_𝑣𝑎𝑙𝑖𝑑𝑠 ← 𝑝𝑜𝑝𝑐(𝑣𝑎𝑙𝑖𝑑𝑠);
4 𝑣𝑎𝑙𝑖𝑑𝑠_𝑜𝑓𝑓𝑠𝑒𝑡 ← 𝑐𝑜𝑢𝑛𝑡_1_𝑟𝑖𝑔ℎ𝑡(𝑣𝑎𝑙𝑖𝑑𝑠, 𝑙𝑎𝑛𝑒);
5 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑠_𝑜𝑓𝑓𝑠𝑒𝑡 ← 𝑎𝑚𝑜𝑢𝑛𝑡_𝑣𝑎𝑙𝑖𝑑𝑠 + 𝑐𝑜𝑢𝑛𝑡_0_𝑟𝑖𝑔ℎ𝑡(𝑣𝑎𝑙𝑖𝑑𝑠, 𝑙𝑎𝑛𝑒);
6 𝑝𝑜𝑠 ← 𝑠𝑡𝑎𝑟𝑡 + (𝑣𝑎𝑙𝑖𝑑 ? 𝑣𝑎𝑙𝑖𝑑𝑠_𝑜𝑓𝑓𝑠𝑒𝑡 ∶ 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑠_𝑜𝑓𝑓𝑠𝑒𝑡);
7 𝑣[𝑝𝑜𝑠] ← 𝑣𝑎𝑙𝑢𝑒;
8 𝑣.𝑙𝑒𝑛 += 𝑎𝑚𝑜𝑢𝑛𝑡_𝑣𝑎𝑙𝑖𝑑𝑠

whether the value is valid. The threads call the ballot_sync warp ex-
change primitive to build a mask that gathers the valid value of all 
threads (line 2). Line 3 counts the 1’s in the mask (popc), representing 
the number of valid values the warp will write. Each thread counts the 
amount of valid (line 4) and invalid (line 5) values that the threads with 
lower lane will write, and threads use this information to calculate the 
exact position the values will be written in 𝑣 (lines 6 and 7), depend-
ing on whether they are valid or not. As invalid values are written after 
the valid ones, the size of the array is increased only by the number of 
valid values (line 8). The positions written by threads are contiguous 
to ensure coalesced memory requests, and all threads write their val-
ues to guarantee a divergence-free execution. This primitive is essential 
to allow the optimization that removes the compact phase of DuMato 
workflow, as it will be used to reorganize the extensions inside the filter 
phase.
Warp-Centric Implementation of Enumeration Phases. Next we de-
tail the warp-centric implementation of each subgraph enumeration 
phase depicted in Fig. 4. Algorithm 8 presents the implementation of 
the Extend phase, the BFS phase of DFS-wide that performs custom op-
erations implemented by function pointer 𝑜𝑝 (e.g., intersection) using 
the specified extensions, cache lines and adjacency lists provided by the 
masks. Lines 2-3 are initial SISD steps that check whether the extensions 
have already been generated and, in case they have not, the 𝑒𝑔 flag is 
set to true as the extensions will be generated. After initializing the cur-
rent extensions (line 5), lines 7-19 iterate over the input masks to call 
the function 𝑜𝑝 and perform the desired operations with the appropriate 
sets and the results are gradually stored in the current 𝑇𝐸.𝑒𝑥𝑡.

Algorithm 8: Extend primitive.

1 𝑣𝑜𝑖𝑑 𝑒𝑥𝑡𝑒𝑛𝑑(𝑇𝐸, 𝑚_𝑒𝑥𝑡, 𝑚_𝑐𝑎𝑐ℎ𝑒, 𝑚_𝑎𝑑𝑗, 𝑜𝑝):
2 𝑒𝑔 ← 𝑇𝐸.𝑒𝑔[𝑇𝐸.𝑙𝑒𝑛 − 1];
3 𝑖𝑓 (!𝑒𝑔) ∶
4 𝑇𝐸.𝑒𝑔[𝑇𝐸.𝑙𝑒𝑛 − 1] ← 𝑡𝑟𝑢𝑒;
5 𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1] ← ∅;
6 𝑖 ← 0;
7 𝑤ℎ𝑖𝑙𝑒(𝑖 < 𝑘 − 1):
8 𝑏𝑖𝑡 ← 𝑙𝑜𝑤𝑒𝑠𝑡_𝑏𝑖𝑡(𝑚_𝑒𝑥𝑡);
9 𝑖𝑓 (𝑏𝑖𝑡):

10 𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1] ← 𝑜𝑝(𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1], 𝑇𝐸.𝑒𝑥𝑡[𝑖]);
11 𝑏𝑖𝑡 ← 𝑙𝑜𝑤𝑒𝑠𝑡_𝑏𝑖𝑡(𝑚_𝑐𝑎𝑐ℎ𝑒);
12 𝑖𝑓 (𝑏𝑖𝑡):
13 𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1] ← 𝑜𝑝(𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1], 𝑇𝐸.𝑐𝑎𝑐ℎ𝑒[𝑖]);
14 𝑏𝑖𝑡 ← 𝑙𝑜𝑤𝑒𝑠𝑡_𝑏𝑖𝑡(𝑚_𝑎𝑑𝑗);
15 𝑖𝑓 (𝑏𝑖𝑡):
16 𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1] ← 𝑜𝑝(𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1], 𝑇𝐸.𝑎𝑑𝑗[𝑖]);
17 𝑚_𝑒𝑥𝑡 ←𝑚_𝑒𝑥𝑡 >> 1;
18 𝑚_𝑐𝑎𝑐ℎ𝑒 ←𝑚_𝑐𝑎𝑐ℎ𝑒 >> 1;
19 𝑚_𝑎𝑑𝑗 ←𝑚_𝑎𝑑𝑗 >> 1;

Filter iterates over a set of extensions and removes those that do 
not fulfill property 𝑃 . As shown in Algorithm 9, it receives the current 
traversal and a function pointer 𝑃 , which returns a boolean to indicate 
whether an extension is valid. Each thread within the warp gets an ex-
tension (line 5) and passes it to the 𝑃 function (line 6). For example, 

one of the filters used in clique counting checks whether the id of an 
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extension is lower than the id of 𝑡𝑟’s last vertex. 𝑃 functions are warp-
centric and can be implemented using DuMato primitives to access the 
𝑇𝐸 data structure. Lines 7-8 write the extensions to the extensions ar-
ray, keeping only the valid ones. The remodeling of this phase using 
the write primitive allowed the removal of the compact phase from the 
execution workflow, as this primitive writes values back to the exten-
sions array keeping them in contiguous memory positions. Lines 9-10 
compute the number of valid extensions after filtering.

Algorithm 9: Filter primitive.

1 𝑣𝑜𝑖𝑑 𝑓𝑖𝑙𝑡𝑒𝑟(𝑇𝐸, 𝑃 , 𝑎𝑟𝑔𝑠)
2 𝑒 ← 𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1];
3 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 ← 0;
4 𝑓𝑜𝑟(𝑖 ←𝑤𝑎𝑟𝑝_𝑙𝑎𝑛𝑒; 𝑖 < 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑠.𝑙𝑒𝑛 ; 𝑖+ =𝑤𝑎𝑟𝑝_𝑠𝑖𝑧𝑒) ∶
5 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 ← 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑠[𝑖];
6 𝑣𝑎𝑙𝑖𝑑 ← 𝑃 (𝑇𝐸, 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛, 𝑎𝑟𝑔𝑠)
7 𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1].𝑙𝑒𝑛 − = 𝑤𝑎𝑟𝑝_𝑠𝑖𝑧𝑒
8 𝑤𝑟𝑖𝑡𝑒(𝑇𝐸.𝑒𝑥𝑡[𝑇𝐸.𝑙𝑒𝑛 − 1], 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑, 𝑣𝑎𝑙𝑖𝑑, 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛)
9 𝑎𝑚𝑜𝑢𝑛𝑡 ← 𝑝𝑜𝑝𝑐(𝑏𝑎𝑙𝑙𝑜𝑡_𝑠𝑦𝑛𝑐(𝑣𝑎𝑙𝑖𝑑));

10 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 ← 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 + 𝑎𝑚𝑜𝑢𝑛𝑡;

Move implements the DFS phase of DFS-wide, thus allowing a warp 
to move forward or backward in the enumeration of a traversal (recur-
sion step). It is primarily a synchronization step to update the current 
traversal to the warp. Thus, most of its steps are SISD.

Aggregate produces outputs of the GPM algorithms and two of those 
primitives (aggregate_count and aggregate_store) are standard. The first 
counts, for instance, the total of visited subgraphs matching a property, 
while the latter outputs visited subgraphs to the CPU asynchronously 
whenever it is required.

The most complex and challenging aggregate primitive for GPU im-
plementation is the aggregate_pattern is used to output counters for each 
possible canonical representative that matches the desired property, 
such as in the motif counting. The complexity holds on the conver-
sion of a visited traversal into its canonical representative (canonical 
relabeling). Due to that, All subgraph enumeration systems in the liter-
ature perform this operation on the CPU using tools such as Nauty [39]. 
We propose a novel pre-processed dictionary to allow this conversion 
on the GPU (Fig. 6).

We provide a pre-processed input dictionary that converts each pos-
sible induced traversal with 𝑘 vertices from its raw bitmap representa-
tion (Fig. 6(a)) to its canonical representative with the compact bitmap 
representation (Fig. 6(c)). When a warp visits a traversal and the aggre-

gate_pattern is called, the traversal is converted to the compact bitmap 
representation using the dictionary, and the corresponding number is 
used as the index for the local warp counters.

Local warp counters whose size is the number of canonical repre-
sentatives are possible only due to our fast mechanism to convert a 
traversal to a compact bitmap representation using the pre-processed 
dictionary. These dictionaries can be used in any dataset and appli-
cation that requires canonical relabeling (e.g., frequent subgraph min-
ing [16] and subgraph matching [22]), and we provide them as input 
files for different 𝑘 values. To the best of our knowledge, this is the first 
work to propose canonical relabeling on the GPU.

4.3. Warp-level load balancing

Our load-balancing mechanism decides when and how to perform 
the workload redistribution. It is implemented on the CPU and is de-
picted by the Load Balancing box in Fig. 4. This layer communicates 
asynchronously with the GPU by setting flags to indicate to the GPU’s 
control phase when a device-wide synchronization step is required to 
perform a load-balancing step. This is implemented through the func-
tions when_rebalance and how_rebalance depicted in Algorithm 10. Both 
9

functions receive a DM_info argument containing a copy of the main 
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Fig. 6. Conversion of subgraphs from bitmap representation (a) to their canon-
ical representatives (c).

GPU data structures and control flags. In the when_rebalance, the warps’ 
activity information is continuously read by the CPU (lines 2 and 10), 
and if the number of idle warps is found to be higher than a thresh-
old (thr), the workload balancing is carried out (line 4). The GPU 𝑙𝑏
flag is set to true to inform warps that the execution should be inter-
rupted, and this flag is read by the Control phase on GPU. The CPU then 
waits for the kernel (all warps) to finish and executes how_rebalance to 
perform donations between warps. Given two warps 𝑤1 and 𝑤2, a do-

nation from 𝑤1 to 𝑤2 is the extraction of one active traversal from 𝑤1 ’s 
queue of jobs and its insertion into 𝑤2 ’s queue of jobs. We say 𝑤1 is the
donator. Once rebalancing is completed, line 9 restarts the execution.

Algorithm 10: CPU code for load balancing.

1 𝑣𝑜𝑖𝑑 𝑤ℎ𝑒𝑛_𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝐷𝑀_𝑖𝑛𝑓𝑜 𝑔𝑝𝑢){
2 𝑓𝑙𝑎𝑔𝑠 ← 𝑔𝑝𝑢.𝑟𝑒𝑎𝑑_𝑓𝑙𝑎𝑔𝑠();
3 𝑤ℎ𝑖𝑙𝑒(𝑓𝑙𝑎𝑔𝑠.𝑎𝑐𝑡𝑖𝑣𝑒_𝑤𝑎𝑟𝑝𝑠 > 0):
4 𝑖𝑓 (𝑓𝑙𝑎𝑔𝑠.𝑖𝑑𝑙𝑒_𝑤𝑎𝑟𝑝𝑠 > 𝑡ℎ𝑟):
5 𝑔𝑝𝑢.𝑙𝑏 ← 𝑡𝑟𝑢𝑒;
6 𝑔𝑝𝑢.𝑤𝑎𝑖𝑡𝐾𝑒𝑟𝑛𝑒𝑙();
7 ℎ𝑜𝑤_𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝑔𝑝𝑢);
8 𝑔𝑝𝑢.𝑙𝑏 ← 𝑓𝑎𝑙𝑠𝑒;
9 𝑔𝑝𝑢.𝑟𝑢𝑛𝐾𝑒𝑟𝑛𝑒𝑙();

10 𝑓𝑙𝑎𝑔𝑠 ← 𝑔𝑝𝑢.𝑟𝑒𝑎𝑑_𝑓𝑙𝑎𝑔𝑠();
11 𝑣𝑜𝑖𝑑 ℎ𝑜𝑤_𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝐷𝑀_𝑖𝑛𝑓𝑜 𝑔𝑝𝑢){
12 𝑖𝑑𝑙𝑒𝑠 ← 𝑙𝑖𝑠𝑡(𝑔𝑝𝑢.𝑖𝑑𝑙𝑒𝑠);
13 𝑎𝑐𝑡𝑖𝑣𝑒𝑠 ← ℎ𝑒𝑎𝑝(𝑔𝑝𝑢.𝑎𝑐𝑡𝑖𝑣𝑒𝑠);
14 𝑡𝑜𝑡𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡 ← 𝑠𝑢𝑚_𝑤𝑒𝑖𝑔ℎ𝑡(𝑎𝑐𝑡𝑖𝑣𝑒𝑠);
15 𝑎𝑣𝑔_𝑤𝑒𝑖𝑔ℎ𝑡 ← 𝑡𝑜𝑡𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡∕|𝑤𝑎𝑟𝑝𝑠|;
16 𝑓𝑜𝑟(𝑖 ← 0 ; 𝑖 < 𝑑𝑜𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ; 𝑖 ++):
17 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ(𝑖𝑑𝑙𝑒 ∈ 𝑖𝑑𝑙𝑒𝑠):
18 𝑑𝑜𝑛𝑎𝑡𝑜𝑟 ← 𝑎𝑐𝑡𝑖𝑣𝑒𝑠.𝑝𝑜𝑝_ℎ𝑒𝑎𝑝();
19 𝑖𝑑𝑙𝑒.𝑗𝑜𝑏𝑠.𝑝𝑢𝑠ℎ(𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑑𝑜𝑛𝑎𝑡𝑜𝑟));
20 𝑖𝑓 (𝑑𝑜𝑛𝑎𝑡𝑜𝑟.𝑤𝑒𝑖𝑔ℎ𝑡 > 𝑎𝑣𝑔_𝑤𝑒𝑖𝑔ℎ𝑡):
21 𝑎𝑐𝑡𝑖𝑣𝑒𝑠.𝑝𝑢𝑠ℎ_ℎ𝑒𝑎𝑝(𝑑𝑜𝑛𝑎𝑡𝑜𝑟);

In our preliminary version of this work [18], the donation among 
warps (ℎ𝑜𝑤_𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒) did not consider the cost of the jobs (traversals) 
assigned to a warp and was only able to donate a single job among busy 
and idle warps. Here, we improved this strategy with a redistribution 
approach that selects several jobs from warp donators using informa-
tion from their current traversal and extensions, rather than picking 
donators in a round-robin style.

The function how_rebalance depicts our new strategy. We create a 
list of idle warps (line 12) and a max heap with the active ones (line 
13). The criterion used in the heap ordering is the warp weight, which 

is the sum of the size of its arrays of extensions (𝑇𝐸.𝑒𝑥𝑡). Once the total 
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Table 3

Characteristics of datasets used for evaluation.

Dataset V(G) E(G) Avg. Deg. Density Max. Deg.

Citeseer [16] 3.2 K 4.5 K 2.77 8.51 × 10−4 99
ca-AstroPh [33] 18.7 K 198.1 K 21.10 1.12 × 10−3 504
Mico [16] 96.6 K 1.08 M 22.35 2.31 × 10−4 1359
com-DBLP [50] 317 K 1.04 M 6.62 2.08 × 10−5 343
soc-Pokec [50] 1.6 M 30.6 M 37.50 1.14 × 10−5 14854
com-LiveJournal [50] 3.9 M 34.6 M 17.35 4.34 × 10−6 14815

Table 4

Speedup as optimizations are activated in DuMato. Cells with “≥”: only the speedup baseline exceeded 
24 hours. Cells with “-”: both variations exceeded 24 hours.

Impl. 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 7 𝑘 = 8 𝑘 = 9 𝑘 = 10

C
li

qu
e

ca
-A

st
r. DFS→ WC 22 62.1 100 83.8 86.1 97.5 ≥57.6 ≥10.2

WC→ WC_RRLB 0.1 0.5 1.3 4.4 14.2 28.3 44.4 61.2
WC_RRLB→ WC_JLB 0.9 0.9 0.9 1 1.1 1.1 1 1

M
ic

o DFS→ WC 12.7 57 76.3 ≥12.1 - - - -
WC→ WC_RRLB 0.8 2.5 9.2 17.1 ≥7.6 - - -
WC_RRLB→ WC_JLB 0.9 1.6 1.5 1.1 1 - - -

D
B

LP

DFS→ WC 14 30.3 46.6 54.9 64.3 ≥4.6 - -
WC→ WC_RRLB 0.1 0.5 4.9 22.3 48 76.5 ≥29.8 ≥2.8
WC_RRLB→ WC_JLB 1 0.9 1.1 1.3 1.2 1.1 1 1

Li
ve

Jr
. DFS→ WC 14.8 132.6 ≥54 - - - - -

WC→ WC_RRLB 2.4 1.4 2.5 ≥9.2 - - - -
WC_RRLB→ WC_JLB 1.7 1.3 2.8 1.2 - - - -

P
ok

ec DFS→ WC 19.3 69.1 84.9 91.5 152.1 382 436.2 363.3
WC→ WC_RRLB 4.8 2.5 1.9 1.6 1.3 1.1 1.5 2.5
WC_RRLB→ WC_JLB 2.8 2.6 2.1 2 1.7 2 2.1 2.1

M
ot

if
s

C
it

es
ee

r DFS→ WC 1 9 8.3 8.4 13.8 ≥7.1 - -
WC→ WC_RRLB 0.5 2 12.9 37 65.5 98.3 - -
WC_RRLB→ WC_JLB 0.2 0.3 0.5 1.2 1.6 1.3 - -

ca
-A

st
r. DFS→ WC 19.9 26.3 ≥14.7 - - - - -

WC→ WC_RRLB 0.9 6.8 36.8 ≥3.3 - - - -
WC_RRLB→ WC_JLB 1.3 1.8 1.2 1 - - - -

M
ic

o DFS→ WC 24 23.8 - - - - - -
WC→ WC_RRLB 1.3 11.9 ≥10.7 - - - - -
WC_RRLB→ WC_JLB 1.7 2.4 1.1 - - - - -

D
B

LP

DFS→ WC 14.9 20.3 19.7 - - - - -
WC→ WC_RRLB 0.4 3.6 21.3 ≥27.6 - - - -
WC_RRLB→ WC_JLB 1.3 2.5 2.2 1.2 - - - -
weight of active warps is computed, we calculate the average weight 
(line 15), which will be used as a threshold (line 20) to decide whether 
an active warp will donate extensions. Warps carry a list of traversals 
to be processed, called jobs. Given an idle warp, we pop the active warp 
with the highest weight (line 18), get one of its extensions, and push it 
to the list of jobs of the idle warp. If the weight of the donator warp is 
still higher than the average, it is pushed back to the heap (lines 20-21). 
This strategy improves the previous round-robin approach, reducing the 
number of calls to the load-balancing layer as the warps take longer to 
get idle after balancing.

5. Experimental evaluation

This section evaluates the gains of each optimization proposed by 
DuMato and compares it to the state-of-the-art GPM systems. To il-
lustrate, we use three GPM algorithms: clique counting, motif counting

and subgraph matching, presented in Section 4.2.2. Table 3 presents the 
datasets employed. CPU experiments were conducted on a machine 
with an Intel Xeon Silver 4108 CPU (16 threads with hyperthread-
ing), 48 GB of RAM, and Ubuntu 18.04. GPU experiments used an 
NVIDIA TITAN V with 12 GB and CUDA 10.1. The time limit adopted for 
each execution was 24 hours. Every execution was run three times and 
demonstrated low variability (standard deviations in 0.06%-1.07%). Re-
sults for LiveJournal and Pokec for the motif counting application are 
not presented because it exceeds the 24-hour limit even for small sub-
graph sizes (𝑘 > 4). Results for the clique counting application using 
the Citeseer dataset are not presented because they are not representa-
tive, as this dataset contains a small number of cliques and all systems 
10

enumerate them in a few milliseconds.
We have evaluated four versions (implementations) of DuMato that 
vary according to the optimizations leveraged: DM_DFS in which each 
GPU thread receives a traversal and calculates the enumeration using 
the DFS; DM_WC in which GPU warps receives traversals for process-
ing and uses the DFS-wide traversal and the warp-centric workflow; 
DM_WC_RRLB that includes load balancing and is the fastest version 
from our previous work [18]; DM_WC_JLB that uses our new load-
balancing strategy (Section 4.3). The speedups as optimizations are 
activated in DuMato are presented in Table 4 for the motif counting

and clique counting algorithms. We have varied the number of threads 
used and balancing threshold to choose these parameters and the re-
sults shown that a value of 102,400 threads and a threshold of 30% led 
to the best performance for most of our case. Details on this evaluation 
are available in Section S1. As such, we have used these values for the 
rest of the experiments.

5.1. Gains due to optimizations

The DM_DFS assigns traversals per thread that process them inde-
pendently. As it may result in a different execution path, threads within 
a warp will diverge through the enumeration, deteriorating warp and 
memory efficiency. Divergences are reduced and memory access pat-
tern is improved by the DM_WC version, which attains speedups up to 
two orders of magnitude (e.e., Clique, LiveJournal and 𝑘 = 4) w.r.t. the 
DM_DFS.

We have executed DM_DFS and DM_WC versions with the CUDA 
NVProf profiling tool [10], which allowed us to measure the impacts 
of our optimizations at the hardware level. The profiling results for the 

DBLP dataset and 𝑘 up to 4 are shown in Table 5. Results for the other 
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Table 5

DM_DFS vs DM_WC: execution and memory metrics.

App. 𝑘
Memory (load transactions) Execution (inst. per warp)
DM_DFS DM_WC Improvement DM_DFS DM_WC Improvement

Clique
3 618.1 M 212.7 M 2.9× 3.3 M 876.6 K 3.8×
4 6.7 B 852.4 M 7.9× 50.5 M 5.1 M 9.9×

Motifs
3 3.3 B 597.0 M 5.53× 17.5 M 2.6 M 7.36×
4 134.7 B 22.8 B 5.90× 1.9 B 143.2 M 13.3×
datasets are similar. Two categories of metrics (execution and mem-
ory) allow us to quantify DuMato’s effectiveness in using GPU’s massive 
parallelism, execution, and memory hierarchy. The metric inst_per_warp

indicates the average number of instructions warps need to execute the 
respective kernel. Our goal with the improvements in regularity is to 
allow a lockstep execution within a warp, reducing the number of to-
tal instructions issued. The metrics gld_transactions quantifies the total 
amount of global memory transactions needed to service read requests. 
Our optimizations improve the memory access pattern, providing more 
coalesced requests and reducing the number of transactions.

The execution efficiency of our warp-centric implementation is con-
firmed by the reduction in the total number of instructions per warp 
needed by the DM_WC version, with improvements ranging from 3.8x 
and 13.3x. These optimizations increased the amount of coalesced mem-
ory requests, thus reducing the total amount of memory transactions 
from 2.9× to 7.9×.

The DM_WC_RRLB provided significant performance gains vs. 
DM_WC, reaching speedups up to 98× (Motifs, Citeseer and k = 8). 
The impact of load-balancing is more effective as 𝑘 increases. This hap-
pens because the load imbalance is higher in these cases due to the 
skewness of real-world datasets. For more skewed datasets (Citeseer, 
ca-AstroPh, and DBLP), the workload distribution becomes imbalanced 
more quickly and our load-balancing strategy therefore attains higher 
gains.

The DM_WC_JLB that donates multiple jobs per warp was first tuned 
to set its number of donations to 16 (See Section S2 for details). As 
shown in Table 4, it improves the DM_WC_RRLB performance in all 
cases. More details on load balancing evaluation are available in Sec-
tion S3.

5.2. Comparison to other GPM systems

This section compares the best performing version of DuMato/DMT
(version including all optimizations: DM_WC_JLB) to the state-of-the-art 
subgraph enumeration systems for GPU: G2Miner/G2M [7] (pattern-
aware and DFS), RPS/RPS [21] (pattern-aware and DFS) and Pan-
golin/PAN [9] (pattern-oblivious and BFS). We also compared Du-
Mato to the CPU systems Peregrine/PER [27] (pattern-aware) and 
Fractal/FRA [13] (pattern-oblivious). All these systems represent dif-
ferent architectures, traversal strategies (BFS/DFS), and enumeration 
paradigms (pattern-oblivious/pattern-aware).

The experimental results for the motif counting and clique count-
ing algorithms are presented in Table 6. We can observe that DuMato 
can enumerate larger subgraphs than any other system. This is possible 
due to the DFS-wide traversal strategy, which reduces the memory con-
sumption and mitigates the impacts of combinatorial explosion, thus 
allowing the visitation of larger subgraphs using an affordable amount 
of memory; the efficient load-balancing layer, which mitigates the load 
imbalance as we increase 𝑘 and reduces the impacts of data skewness; 
the flexibility in the choice of the enumeration paradigm, as the pattern-
oblivious allowed the visitation of several patterns in parallel up to 
𝑘 = 8 (motif counting) without the need of thousands of exploration 
plans, and the pattern-aware provided an optimized version of the ap-
plication relying on a single pattern (clique counting). Although Table 6
showed only subgraph sizes up 14, DuMato was able to reach subgraph 
sizes up to 28 (Clique counting, Pokec dataset) in less than a minute. 
11

To the best of our knowledge, subgraphs of such size have not been ex-
plored by any other enumeration system searching for exact outputs, 
demonstrating our scalability and memory awareness.

Pangolin uses BFS, which materializes all the intermediate enu-
meration states and facilitates regular execution and load balancing, 
providing good execution times for small enumerated subgraphs. How-
ever, as the size of the enumerated subgraphs increases, it crashes due 
to its high-memory consumption caused by the combinatorial explosion 
of intermediate enumeration states. Similarly to DuMato, Fractal uses 
DFS and the pattern-oblivious enumeration paradigm, but it executes 
on CPUs. DuMato attained consistent speedups w.r.t. Fractal in all exe-
cutions.

Peregrine is a pattern-aware DFS system, and we attained speedups 
up to 105× when larger patterns are enumerated (motif application, 
Citeseer dataset, and 𝑘 = 8). As we increase the size of the enumerated 
subgraphs in the motif counting application, we also increase the num-
ber of valid patterns. This increase does not generate pre-processing 
overheads to DuMato, as the pattern-oblivious strategy does not use 
the patterns to guide the exploration. On the other hand, Peregrine 
relies on exploration plans for each pattern, and this growth in the 
number of patterns also increases its pre-processing costs to generate 
the exploration plans. Additionally, as the motif counting searches for 
all possible subgraphs, some of Peregrine’s exploration plans may not 
generate valid subgraphs, wasting computational resources. Peregrine’s 
best-case scenario is the enumeration of one specific pattern, and even 
in this scenario (clique) we attained consistent speedups.

The reduction in the memory consumption of parallel subgraph enu-
meration in the exploration of larger subgraphs, along with the efficient 
strategies for regular parallel processing, confirm our hypotheses that 
subgraph enumeration on GPU must deal with irregularity and combi-
natorial explosion in order to design and implement GPM algorithms 
efficiently on this architecture. Our efficient pattern-oblivious design 
also allows the exploration of more patterns in parallel compared to the 
state-of-the-art GPM systems.

For the comparison with the state-of-the-art frameworks we also 
executed the subgraph matching application (Table 7). The patterns 
used were quasi-cliques such that 𝑞𝑖 is a graph with 𝑖 vertices and 
(𝑖 × (𝑖 − 1)∕2) − 1 edges. The exploration plan used was extracted from 
the heuristic proposed by Fractal [13]. G2Miner, Pangolin, and RPS 
could not generate functional GPU kernels to execute for any of these 
patterns. Thus, their results are not presented. G2Miner provides a 
code generator to create new GPU kernels for specific patterns, but 
it does not generate functional GPU code for new patterns. Pangolin 
is a pattern-oblivious system that does not provide an implementation 
for subgraph matching. In order to match a new pattern, RPS needs 
the set of symmetry-breaking rules needed for the pattern. However, 
the symmetry-breaking rules needed to break automorphism depend 
on the exploration plan, and none of the symmetry-breaking rules 
we provided could execute RPS properly. DuMato presents significant 
speedups, achieving higher speedups as we increase the size of the pat-
terns. For example, there is a small increase in the execution time of 
DuMato from 𝑞9 to 𝑞10 in the Pokec dataset, while the other systems are 
more impacted, showing the scalability of our strategies as we increase 
𝑘.

6. Conclusion and future work

In this work, we propose novel strategies to mitigate the main chal-

lenges for efficient subgraph enumeration on GPUs: irregularity, which 
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Table 6

Execution time (seconds) of DuMato and baselines (GPU and CPU). Cells with “-”: exceeded 24 hours. “ERR”: errors during execution. “NS”: not 
supported. “OOM”: out-of-memory. “INC”: finished with incomplete results.

𝑘 = 3 4 5 6 7 8 9 10 11 12 13 14

M
ot

if
s

C
it

es
ee

r
DMT 0.11 0.12 0.24 0.67 5.06 96.95 - - - - - -
G2M 0.01 ERR NS NS NS NS NS NS NS NS NS NS
PAN 0.01 0.01 INC OOM OOM OOM OOM OOM OOM OOM OOM OOM
PER 0.01 0.01 0.05 3.47 537.66 - - NS NS NS NS NS
FRA 5.17 5.20 5.69 12.44 163.48 - - - - - - -

ca
-A

st
ro

ph

DMT 0.25 1.47 126.78 23.62 K - - - - - - - -
G2M 0.01 0.05 NS NS NS NS NS NS NS NS NS NS
PAN 0.01 0.21 INC OOM OOM OOM OOM OOM OOM OOM OOM OOM
PER 0.01 0.57 132.90 52.80 K - - - - - - - -
FRA 9.13 435.64 4.72 K - - - - - - - - -

M
ic

o

DMT 0.47 23.27 7.62 K - - - - - - - - -
G2M 0.01 0.84 NS NS NS NS NS NS NS NS NS NS
PAN 0.01 3.31 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
PER 0.06 6.57 7.92 K - - - - - - - - -
FRA 16.43 474.46 - - - - - - - - - -

D
B

LP

DMT 0.13 1.11 31.90 2.64 K - - - - - - - -
G2M 0.01 0.84 NS NS NS NS NS NS NS NS NS NS
PAN 0.01 0.17 INC OOM OOM OOM OOM OOM OOM OOM OOM OOM
PER 0.07 0.95 78.59 50.95 K - - - - - - - -
FRA 14.33 37.62 1.43 K - - - - - - - - -

C
li

qu
e

ca
-A

st
ro

ph

DMT 0.13 0.15 0.43 0.86 2.19 7.82 32.48 137.04 561.12 2.13 K 7.44 K 24.57 K

G2M 0.01 0.01 0.01 0.08 0.68 5.01 NS NS NS NS NS NS
RPS 0.02 0.04 0.17 1.85 NS NS NS NS NS NS NS NS
PAN 0.01 0.01 0.02 0.11 0.61 OOM OOM OOM OOM - - -
PER 0.01 0.10 0.83 6.38 43.56 272.42 1.55 K 7.93 K 36.26 K - - -
FRA 8.17 9.75 15.89 78.09 439.16 2.30 K 12.89 K 57.02 K - - - -

M
ic

o

DMT 0.31 1.08 13.93 373.14 10.91 K - - - - - - -
G2M 0.01 0.02 0.74 31.98 1.16 K 39.58 K NS NS NS NS NS NS
RPS 0.11 0.37 14.59 953.00 NS NS NS NS NS NS NS NS
PAN 0.01 0.05 2.93 OOM - - - - - - - -
PER 0.09 1.81 82.67 3.66 K - - - - - - - -
FRA 14.17 48.53 1.44 K 56.72 K - - - - - - - -

D
B

LP

DMT 0.13 0.29 0.47 2.09 19.49 229.52 2.77 K 29.90 K - - - -
G2M 0.01 0.01 0.02 0.37 8.16 148.23 NS NS NS NS NS NS
RPS 0.04 0.07 0.24 3.62 NS NS NS NS NS NS NS NS
PAN 0.01 0.01 0.03 0.50 OOM OOM OOM OOM OOM OOM OOM OOM
PER 0.11 0.16 1.36 25.92 531.88 9.35 K - - - - - -
FRA 13.44 14.32 22.72 186.97 2.52 K 35.51 K - - - - - -

Li
ve

Jo
u
rn

al

DMT 4.70 22.91 232.53 8.00 K - - - - - - - -
G2M 0.02 0.21 6.39 318.98 14.95 K - NS NS NS NS NS NS
RPS 2.16 6.18 154.78 9.63 K NS NS NS NS NS NS NS NS
PAN 0.01 0.53 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
PER 3.91 26.66 1.06 K 64.74 K - - - - - - - -
FRA 394.85 901.05 16.06 K - - - - - - - - -

P
ok

ec

DMT 1.44 2.91 4.97 6.32 8.84 9.32 11.32 13.03 17.45 17.88 19.56 23.38

G2M 0.01 0.03 0.06 0.10 0.18 0.39 NS NS NS NS NS NS
RPS 1.79 3.16 4.44 5.97 NS NS NS NS NS NS NS NS
PAN 0.06 0.21 0.30 0.39 0.52 ERR ERR ERR ERR ERR ERR ERR
PER 2.46 6.93 14.19 24.61 39.93 61.94 93.85 144.47 221.63 344.19 546.65 838.45
FRA 172.41 212.27 293.00 495.62 577.57 812.94 1.03 K 1.52 K 1.70 K 1.96 K 2.26 K 2.42 K
limits the use of GPU’s massive parallelism and HBRAM; combinatorial 
explosion, which creates high memory demands and limits the scalabil-
ity of GPM algorithms; flexibility in the enumeration paradigm, as the 
tradeoff between using these paradigms is hard to quantify and current 
GPU solutions support either pattern-oblivious or pattern-aware. Our 
DFS-wide traversal strategy provides a good tradeoff between memory 
locality and low memory consumption for the intermediate enumera-
tion states, thus improving the efficiency in accessing GPU’s HBRAM 
and reducing the impacts of combinatorial explosion.

Our warp-centric enumeration workflow uses the DFS-wide data 
structures to implement subgraph enumeration through efficient SIMD/
SISD lockstep phases, reducing divergences and improving GPU’s 
HBRAM efficiency through memory coalescence. In this work, we refac-
tored the enumeration phases using three efficient warp-centric core 
primitives (find_one, find_many, and write). This not only improved the 
system’s comprehensiveness but also allowed the removal of the com-
paction phase from the enumeration workflow.

Our load-balancing strategies mitigate the imbalance caused by the 
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irregular processing during the parallel subgraph enumeration. We pro-
posed a lightweight warp-level layer performed by the CPU, which 
monitors GPU occupancy to rebalance when utilization is low. Two cus-
tom functions must be provided to this layer: when_rebalance, which uses 
a threshold to infer when GPU is idle and a workload redistribution is 
necessary; how_rebalance, which improves our previous strategy to re-
distribute enumeration jobs considering the weight of each warp. Jobs 
are now extracted from the heaviest warps, thus allowing a better load 
balancing than our previous round-robin strategy. Furthermore, warps 
receive several jobs in a rebalancing, increasing the GPU occupancy and 
reducing the calls to the load-balancing layer.

Our general-purpose subgraph enumeration system (DuMato) uses 
our novel strategies to allow efficient implementations of GPM algo-
rithms on GPUs using high-level primitives and an adaptive execution 
workflow. To the best of our knowledge, DuMato is the first sys-
tem to support both enumeration paradigms (pattern-oblivious/pattern-
aware), allowing the users to understand and exploit the best-case sce-
nario of each paradigm and achieve better performance results.

In the future, we plan to improve the efficiency of the warp-centric 

enumeration phases by splitting physical warps into virtual ones (sub-
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Table 7

Execution time (seconds) of DuMato and baselines (GPU and CPU) for the subgraph match-
ing application.

System 𝑞4 𝑞5 𝑞6 𝑞7 𝑞8 𝑞9 𝑞10

C
it

es
ee

r DuMato 0.11 0.13 0.13 0.14 ∅ ∅ ∅
Peregrine 0.01 0.01 0.01 0.19 ∅ ∅ ∅
Fractal 1.78 1.84 1.78 2.05 ∅ ∅ ∅

ca
-A

st
r. DuMato 0.15 0.46 1.59 6.48 34.04 181.45 924.89

Peregrine 0.02 0.30 2.78 23.04 165.11 1.23 K 16.83 K
Fractal 5.05 17.25 140.05 1.26 K 8.35 K 62.10 K −

M
ic

o DuMato 0.74 7.48 234.49 9.64 K − − −
Peregrine 0.15 5.85 321.27 14.71 K − − −
Fractal 39.59 2.80 K − − − − −

D
B

LP

DuMato 0.15 0.50 3.90 53.56 846.29 12.07 K −
Peregrine 0.10 0.34 3.44 73.22 1.54 K 26.85 K −
Fractal 9.52 35.58 759.04 18.28 K − − −

Li
ve

Jr
. DuMato 10.36 172.09 4.22 K − − − −

Peregrine 5.63 76.00 3.32 K − − − −
Fractal 672.82 39.58 K − − − − −

P
ok

ec DuMato 2.21 9.94 14.09 17.34 19.50 21.64 27.67
Peregrine 3.30 10.28 20.55 35.11 57.80 281.19 11.38 K
Fractal 182.09 242.56 371.92 495.40 749.39 1.18 K 1.61 K
warps). This will enable us to modulate subwarps sizes dynamically 
according to the sizes of neighborhoods, which should improve warp 
execution efficiency when visiting the adjacency lists while generating 
extensions. We also plan extending our system with a multi-GPU version 
to accelerate it further. Another promising direction for future work 
refers to the investigation of novel approaches for load balancing in the 
domain, given the high impact of this optimization to the performance. 
As such, we expect to compare our approaches to those proposed in the 
STMatch [48] that, differently from DuMato, performs stealing within 
and across threadbloks inside the GPU. The STMatch strategies could 
also benefit from our weighted task redistribution, leading to novel ap-
proaches.
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