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Abstract—Graph Pattern Mining (GPM) refers to a class of
problems involving the processing of subgraphs extracted from
larger graphs. Applications to GPM algorithms include querying
subgraphs, identifying motif structures in biological networks,
characterizing social media, among others. GPM algorithms are
challenging to develop due to subroutines that include non-
trivial graph theory concepts and methods such as isomorphism.
General-purpose GPM systems have emerged as a solution to im-
prove the user experience with such algorithms. However, existing
general-purpose GPM systems are heterogeneous in terms of
implementation details, hardware environment and algorithmic
paradigms for subgraph exploration and thus, observations taken
from the experimental results alone may not clearly identify
when a particular paradigm prevails over another. In this work
we present an experimentation analysis of popular paradigms
used in existing GPM systems. In order to provide a fair and
comprehensive evaluation of various algorithmic paradigms we
implement all of them within a single GPM framework. Our
results show that no single paradigm is best for every application
scenario, and we believe that our findings may guide practitioner
towards more optimized GPM systems in the future.

Index Terms—graph pattern mining, experimental evaluation

I. INTRODUCTION

Graph pattern mining (GPM) refers to a class of problems

marked by the processing of subgraphs extracted from larger

graphs. The relevance of GPM computation includes applica-

tions such as motif extraction from biological networks [1],

frequent subgraph mining [2], [3], [4], subgraph searching

over semantic data (e.g., RDF) [5], social media network

characterization [6], [7], community discovery [8], periodic

community discovery [9], temporal hotspot identification [10],

identification of surprising dense subgraphs in social networks

[11], link spam detection [12], financial fraud detection [13],

recommendation systems [14], graph learning [15], among

others. GPM algorithms are complex to design and to deploy

since they usually involve handling an exponential number of

subgraph candidates (combinatorial explosion) and non-trivial

routines for grouping or enumerating subgraphs based on

their equivalence classes (isomorphisms). As a result, general-

purpose GPM systems have emerged as a viable solution that

facilitates programmer productivity and efficient performance.

The space of existing general-purpose GPM systems is

diverse. In one dimension, some systems are designed for

multi-threaded or distributed settings [16], [17], [18], [19],

others are designed for emerging GPU architectures [20], [21],

[22], and yet others for hardware accelerators [23], [24]. In a

second dimension, two main alternative GPM paradigms are

adopted by GPM systems and are responsible for ensuring

an efficient search-space exploration of subgraphs: (i) the

pattern-oblivious subgraph enumeration paradigm (POSE) in

which no pattern information is given to guide subgraph

enumeration and (ii) the pattern-aware subgraph enumer-
ation paradigm (PASE) in which subgraph enumeration is

performed by matching candidate patterns (templates) against

the input graph. Figure 1 shows subgraphs with 3 vertices

being explored using each paradigm. While POSE relies on

some canonical filter [18] function to enumerate the distinct

subgraphs within a graph, PASE accomplishes the same task

by generating patterns of interest (templates) first and match-

ing each against the graph using some strategy derived from

Ullmann’s algorithm [25] and accompanied with symmetry
breaking [26] conditions to ensure the same set of distinct

subgraphs. Such a range of implementations in multiple

architectures (first dimension) spanning various algorithmic

paradigms (second dimension) leads to a lack of understanding

on the source of the performance gains, and it also complicates

the evaluation of new and existing optimizations. To partially

redress this situation we present a wide evaluation of exist-

ing GPM paradigms and application scenarios over a single

distributed framework model (i.e. fixing the first dimension)

to both consolidate the collective knowledge about existing

efforts and to identify promising directions for future work,

especially along the second dimension listed above.

Two main challenges complicate the task of evaluating

GPM paradigms. First, because GPM algorithms built over

general-purpose systems often include user-specific semantics,

multiple algorithms or implementations to solve a task may
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Fig. 1. Alternative paradigms used in GPM systems.

exist. Specifically, this means that our experimental method-

ology must accommodate both pattern-aware and pattern-

oblivious paradigms within the same system implementation

and underlying application model. This is non-trivial since

most existing GPM systems do not support both paradigms.

Most existing GPM systems adopt either pattern-oblivious

(POSE) [18], [19] or pattern-aware (PASE) [27], [28], [24]

for their enumeration engine, and the few that support both

paradigms fail to provide a clean way to combine paradigms

to understand the impacts of task specification (usually via a

domain specific programming language), architecture and un-

derlying optimizations [29]. Hence, existing GPM systems are

not ideal for a systematic evaluation since a direct comparison

may not distinguish whether the performance differences are

explained by the GPM paradigm or the implementation details.

Second, in order to identify the trade-offs between alterna-

tive GPM paradigms, one must consider a diverse set of ap-

plications and scenarios. Moreover, an experimental evaluation

with these goals must not be limited by reporting comparative

performance measurements, instead it must be able to provide

a comprehensive and insightful diagnostic. Existing works on

general-purpose GPM provide only a narrow perspective of

possible application scenarios [17], [18], [16], [20], [21] and

lack a deep understanding on the sources of performance

discrepancies making it difficult to understand when one

paradigm may be preferred over the other.

In this work we propose a performance study of general-

purpose GPM applications and existing paradigms. Our eval-

uation allows identifying inherent trade-offs between GPM

paradigms and also unveils the opportunities for performance

optimization. Our contributions are summarized as follows:

1. A modular and extensible model for representing and
evaluating GPM applications: We propose a formal descrip-

tion of general-purpose GPM algorithms, unveiling important

building blocks for standardized application design. We also

present a rigorous taxonomy of GPM applications to enable

a more consistent reasoning about the system performance

on different types of tasks and applications, allowing new

emerging performance-driven optimizations and existing GPM

paradigms to be more effective. Our model is implemented as

an extension to the existing GPM system Fractal [17].

2. Experimental evaluation of GPM paradigms: We pro-

vide an extensive experimental evaluation of GPM workloads,

including a wide range of application scenarios, algorithms

and real-world datasets. Our evaluation exposes the trade-

offs between standard GPM paradigms (pattern-oblivious and

pattern-aware) and show how these trade-offs may be ex-

ploited for choosing the most adequate paradigm for a given

workload scenario. To our knowledge this is the first work to

extensively evaluate the various use case scenarios for GPM

workloads and to present a comparative performance diagnosis

of paradigm alternatives on said scenarios.

3. Opportunities for optimization of GPM algorithms:
Our experimental setting and general-purpose modeling ex-

pose key opportunities for deploying existing and new opti-

mization strategies for both existing and future GPM systems.

We also provide a discussion on how to identify opportunities

of optimization given the characteristics of specific workloads.

II. BACKGROUND

Without loss of generality we adopt in this work an undi-

rected input graph G with edges and vertices which may have

multiple labels (Definition 1).

Definition 1: (Graph) A graph G is represented by a set of

vertices V (G), edges E(G), vertex labels L(G), and one map

function fL. Each edge e = (u, v) ∈ E(G) connects a pair

of vertices u and v ∈ V (G). The edges are not directed and

there are no self-loops in G. Formally, (vi, vj) = (vj , vi) and

(vi, vi) /∈ E(G). The labels of a vertex are defined according

the function fL : V (G) → P(L(G)) (power set).

A subgraph is represented by a set of vertices and edges

embedded in the input graph G and in this work we are inter-

ested only in connected subgraphs. Some GPM applications

may also be interested in enumerating induced subgraphs.

The edges of an induced subgraph S comprises all existing

edges from G among vertices in S.

Subgraphs extracted from G may exhibit the same structure

and labeling information. We say that such subgraphs belong

to the same equivalence class and that they are isomorphic
to each other. Graph isomorphism is the problem of verifying

whether two (sub)graphs have an identical structure (topology)

and labeling information. Thereby, each subgraph can be

mapped to a direct representation of its structural and labeling

information, referred simply as pattern (Definition 2). Thus,

a pattern ρ(S) is a template for a subgraph S and, thus, a

subgraph is an instance of its pattern.

Definition 2: (Pattern) Given a subgraph S of graph G, the

pattern of S is a set of pattern edges ρ(S) such that (u, v) ∈
E(S) iff (π(u), fL(u), π(v), fL(v)) ∈ ρ(S), where π is an

isomorphism between S and ρ(S).
In fact, two (sub)graphs G and H in the same equivalence

class have the same canonical pattern, a unique represen-

tation for each pattern. In this work, we adopt the widely

accepted Bliss algorithm [30] to determine the canonical

labeling of a labeled (sub)graph S, denoted by ρc(S). The

enumeration of subgraph instances (not patterns) is also related

to isomorphisms. In fact, any permutation of vertices and edges
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represents an enumeration ordered code for the same subgraph

instance in G. Consequently, GPM systems strict themselves

to enumerating only a single canonical representative code
for each subgraph to prevent redundant work.

A. Graph pattern mining problems

Let G be input graph and S = {S1, . . . , Sn} be the set of

all distinct subgraphs in G. We define the problems solved by

general-purpose GPM systems as the aggregation of subgraphs

of interest enumerated from G according to a predicate C
and a given size k (depending on the context, the size of a

subgraph can be its number of vertices or edges). The predicate

can be defined over any property that may be obtained from

subgraphs in G such as labeling, density, structure, to cite a

few. The aggregation can be any function that generates an

output given the set of subgraphs of interest (e.g. counting,

listing, averaging, verifying frequency). This work focuses on

identifying the impact of GPM paradigms (PASE and POSE)

on performance and most problems described next assumes

listing/counting as standard aggregation routine.

1. Pattern querying (ρ-PQ): Querying a subgraph pattern

is useful to graph databases and as core operation of pattern-

aware GPM systems [16], [27]. The task is to list and count all

the subgraphs in an input graph G isomorphic to a user-defined

pattern ρ, i.e., the predicate C(S) is satisfied iff ρ(S) = ρ.

2. Frequent subgraph mining (k-FSM -α): A Frequent

Subgraph Mining (FSM) kernel seeks to obtain all frequent

not induced patterns and subgraphs from a labeled input graph

G. A pattern P is frequent if it has a support s(P ) ∈ S above a

threshold α, i.e., if s(P ) ≥ α. We adopt the minimum image-
based support [31] as the support function s(·) to leverage

the anti-monotonic property: larger frequent patterns can only

be obtained from smaller also frequent patterns. We compute

the not induced frequent patterns and subgraphs with k edges

(Fk) from frequent patterns with k− 1 edges (Fk−1), i.e., the

predicate C(S) is satisfied iff p ∈ Fk−1 and ρc(S) ⊃ p.

3. Quasi-cliques (k-QC -α): Dense subgraph extraction

can assist in fraud detection for social networks [32], in un-

veiling structural correlations for attributed graphs [33], among

others. The problem seek to list and count α-quasi-cliques in a

graph. A α-quasi-clique of size k is an induced subgraph that

has k vertices and each of them is connected to a fraction of

the vertices in the subgraph, i.e., the predicate C(S) is satisfied

iff for each v ∈ V (S), degree(v) ≥ �α ∗ (|V (S)| − 1)�.

4. Query specialization (ρ-QS ): Given a pattern query

ρ the goal of query specialization [34], [35] is to unveil

new queries that are specializations of ρ, i.e., larger queries

containing ρ. The major procedure in unveiling query special-

izations is to list and to count not induced subgraphs that

are isomorphic to specializations of query ρ. We consider

specializations containing pattern ρ and an additional edge,

i.e., the predicate C(S) is satisfied only for a subgraph S in

which pattern contains ρ and has |E(ρ)|+1 edges (ρ ⊂ ρ(S)).

5. Label search (k-LS -L): Graph databases (e.g. Neo4j)

are often represented by entities (vertices) that are related

among themselves (edges). Vertices may carry labeled se-

mantics representing roles or types in the database schema.

The goal of label-based subgraph search is to extract relevant

induced subgraphs with k vertices from a larger input graph

according to labels of interest (L), i.e., the predicate C(S)
is satisfied only for subgraphs S in which every vertex label

exists in the input label set (∀u ∈ V (S), L(u) ⊆ L).

III. MODELING GPM ALGORITHMS

In this work we extend a primitive-based model for general-

purpose GPM [17] and adopt the same model to represent each

algorithm evaluated in our experimental analysis, allowing

a fair and comprehensive comparison among strategies and

paradigms. Specifically, our alternative algorithms for solving

the GPM problems are modeled through four primitives:

extension (E), filtering (F), aggregation (A), and mapping (M).

The first two primitives allow default implementation of the

standard GPM paradigms (PASE and POSE). The third is

straightforward since is inherent of each application scenario

and unrelated to enumeration paradigms and thus, we omit

its discussion in this work. The last primitive is an extension

proposed in this work to enable the combination of both

paradigms in the same algorithm (detailed in Section III).

Figure 2 illustrates the operation of these primitives.
ex

te
ns

io
n

fil
te

rin
g

m
ap

pi
ng

(different subgraph code)

Fig. 2. Modeling GPM algorithms via primitives. Primitives (E, F, A) can
be sequenced (regex GE(E+ F+ M)∗A) to represent an application step.
Aggregation (not shown) can be any output function over subgraphs.

Extension primitive: This primitive generates the search

space of subgraphs by receiving a set of subgraphs as input,

extending each by using their own neighborhood in G, and

producing a set of larger subgraphs (Figure 2). Naturally, it

is possible to extend subgraphs using different approaches,

depending on the type of subgraphs targeted and the algorithm

used for extending them. We denote an extension primitive by

E(T, M)E(T, M)E(T, M), where T is the type of subgraphs (i.e. the subgraph

code definition) used during enumeration while M is the

method (or algorithm) that produces extension units from a

subgraph. Next we describe how an extension primitive may

be configured to represent pattern-oblivious (adopted by GPM

systems such as Arabesque [18]) and pattern-aware (adopted

by GPM systems such as Peregrine [16] and Automine [27]).

• E(TV, MC): extension step towards the enumeration of

all unique induced subgraphs (MC) vertex-by-vertex (TV). Sub-

graph codes are ordered vertices of no particular pattern and
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thus, this process uses a pattern-oblivious paradigm (POSE).

Figure 2(E) shows an example of this primitive’s operation.

• E(TE, MC): extension step towards the enumeration of

all unique subgraphs (MC) edge-by-edge (TE). Subgraph codes

in this case are ordered edges of no particular pattern and thus,

this process also uses pattern-oblivious paradigm (POSE).

• E(TP(ρ), MP(ρ)): extension step towards the enumera-

tion of all unique subgraphs that match to a specific pattern

ρ (TP(ρ)) using some method derived from Ullmann’s algo-

rithm [25] and thus, using a pattern-aware paradigm (PASE).

Filtering primitive: The filtering primitive is used to

prune subgraphs that do not meet a few application criteria,

which are user-defined. In this work we denote a filtering

primitive by F(p)F(p)F(p), where p represents a predicate used to

determine whether a subgraph is considered valid and apt

for downstream processing. Figure 2(F) shows an example of

filtering out subgraphs that do not represent a clique.

Mapping primitive: The mapping primitive, denoted by

M(T′, T′′, f)M(T′, T′′, f)M(T′, T′′, f), allows GPM algorithms to accommodate different

extension types in the same subgraph exploration task. We

may accomplish this by converting a code associated to some

extension type T ′ into another code that represents the same

subgraph, but is associated to an alternative extension type

T ′′ via function f. In As we may see in Section III-A (and

Figure 4), this enables hybrid GPM algorithms to combine

GPM paradigms (PASE and POSE). In the example depicted in

Figure 2, two pattern-oriented (TP(ρ)) subgraphs are mapped

to their edge-oriented (TE) canonical representation.

A. GPM algorithm design

Our model comes down to specifying sequences of primi-

tives along with their respective parameters that represent the

algorithm semantics. A GPM application step is denoted by a

string of primitives applied to a given enumeration graph that

starts with an extension primitive, proceeds with any sequence

composed of extension, filtering, or mapping primitives, fin-

ishing with an aggregation primitive that produces the output

(regex GE(E + F +M)∗A). The GPM algorithms described

next may be composed of one or many application steps

denoted as G · · ·A, meaning that within such steps subgraphs

are enumerated from G using some extension/filtering strategy

and aggregated (A) to produce some output. This design enable

a more coarse-grained view of GPM algorithms and allow us

to focus on the fundamentals of the paradigms, i.e., how they

map enumeration work into application steps. For clarity, we

also omit the primitive parameters. We believe this is the first

attempt to model GPM algorithms in a way that is independent

of system implementation, that is concise in terms of the

operators needed to represent different strategies, and that is

modular in terms of how easily the operators can be combined

to solve complex graph analytics routines.

Table I summarizes how the algorithms evaluated in this

work are categorized. Single-pattern represent GPM routines

in which the subgraphs of interest share a same structural

pattern whereas multi-pattern represent GPM routines in

which subgraphs of interest may span multiple structural pat-

terns. Therefore, among multi-pattern algorithms we consider

whether the subgraphs of interest are selected based on a

pattern-driven filter (e.g., finding subgraphs meeting a density

threshold) or based on a label-driven filter (e.g., searching for

subgraphs containing a few labels of interest).

Throughout these categories and for each problem we

consider a few algorithm variants, two of which represent

the paradigms evaluated in this study (pattern-oblivious and

pattern-aware) and others representing alternatives used to

capture promising directions. As we may see in Section V,

existing works are limited in the amount of applications

considered and most importantly, do not provide a multi-

paradigm perspective to their experimental study. Next we

present each algorithm variant evaluated in this work.

TABLE I
PROBLEMS, CATEGORIES AND ALGORITHMS EVALUATED.

pattern querying (ρ-PQ) Single pattern POSE, PASE

freq. sub. mi. (k-FSM -α)
quasi cliques (k-QC -α)
query spec. (ρ-QS )

Multi-pattern,
Pattern-driven filter

POSE, PASE,
PASE+POSE

label search (k-LS -L)
Multi-pattern,
Label-driven filter

POSE, PASE,
POSE+GF

Key notations:
E: holds an extension primitive with parameters – E(T, M)
F : holds a filter primitive with parameters – F(p)
M : holds a mapping primitive with parameters – M(T′, T′′, f)
GE · · ·A: app. step over graph G (modeled via primitives)
VPATTERNS-IND(k): induced patterns with k vertices

(a) POSE alg. for k-FSM -α

1: E ← E(TE, MC)
2: P′ ← GEA
3: Pf ← FREQ-PATTERNS(P′)
4: output Pf
5: for i ← 2 to k do
6: F ← F(patternIsFreq(α, Pf))
7: P′ ← GE1F1 · · ·Ei−1Fi−1EiA
8: Pf ← FREQ-PATTERNS(P′)
9: if Pf = ∅ then

10: break
11: output Pf

(b) PASE alg. for k-QC -α

1: P ← VPATTERNS-IND(k)
2: P′ ← {ρ ∈ P | DENSTY(ρ) ≥ α}
3: for ρ in P′ do
4: E ← E(TP(ρ), MP(ρ))
5: output GE1 · · ·EkA

(c) PASE+POSE alg. for ρ-QS

1: E′ ← E(TP(ρ), MP(ρ))
2: E′′ ← E(TE, M′C) // unique edges
3: M ← M(TP(ρ), TE, f)
4: output GE′

1 · · ·E′
|V (ρ)|ME′′A

(d) POSE+GF alg. for k-LS -L

1: E ← E(TV, MC)
2: F ← F(labelsSubsetOf(L))
3: G′ ← labelsSubsetOf(L)(G)
4: output G′E1F1 · · ·EkFkA

Fig. 3. Algorithm design examples.

POSE: This algorithm variant represents standard

pattern-oblivious design found in systems such as Arabes-

que [18]. The central property of such algorithms is that

they gather in a single application step the enumeration

of subgraphs representing different patterns, which tends to

produce more coarse-grained execution tasks. Figure 3a shows

an example of POSE algorithm for FSM. On each iteration of

the algorithm, responsible for mining larger frequent patterns,
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a single step is submitted (line 7) to enumerate subgraphs of

various patterns. This is accomplished by maintaining a pool

of frequent patterns used to prune the search space via filtering

primitives to discover even larger frequent patterns.

PASE: This algorithm variant represents standard pattern-

aware design found in systems such as Peregrine [16] and

Automine [27]. The central property of such algorithms is

that they submit one application step per pattern, meaning

that each step is responsible for only a particular subset of

subgraphs. Unlike POSE, PASE produces more fine-grained

execution tasks. Because the number of patterns grows ex-

ponentially with the subgraph size, this may be a problem

for larger patterns. Figure 3b shows an example of PASE

algorithm for quasi cliques, with one step per pattern (line 5).

PASE+POSE: If on one hand PASE produces an expo-

nential number of steps, its subgraph exploration allows more

efficient implementations because we may rely on fast set

intersection routines to speedup the generation of extension

candidates [16]. POSE is the opposite: we generate fewer

application steps but at the cost of a less effective subgraph

enumeration. Thereby, we explore in this work a hybrid design

that could capture the best features of both: fewer steps

plus more efficient subgraph enumeration. We explore this

idea for multi-pattern algorithms with pattern-driven filter as

they admit reasoning about different ways one could reach

subgraphs of various patterns. In particular, a GPM algorithm

may ensure a pattern-aware subgraph exploration in the first

extension primitives and switch to a pattern-oblivious on the

fly, which allows an unconditional exploration of larger sub-

graphs. The main challenge concerning this hybrid approach

is that canonical codes for subgraphs differ depending on the

GPM paradigm: symmetry breaking [26] is used for pattern-

aware paradigm while canonical filtering [18] is used for

pattern-oblivious paradigm. Thus, function f denotes a map-

ping process that transforms a subgraph represented through

a pattern-aware code (obtained by MP(ρ) method) into the

same subgraph but represented through an equivalent pattern-

oblivious representation (obtained by MC method). In Figure 4

we show how to enumerate subgraphs with four edges that

contain a tailed triangle ρ by (i) matching a triangle subgraph

isomorphic to ρ and (ii) adding the fourth edge to the matched

subgraph resulting in multiple tailed triangles. In this case, up

to three vertices, the subgraph is being enumerated using a

PASE framework with extension type TP (ρ) and, afterwards,

the last edge is included using a POSE framework with

extension type TE . This is only correct because of the mapping

primitive that includes function f responsible for translating
a TP (ρ) subgraph code into a TE subgraph code, which

introduces consistency between canonical subgraph codes.

Figure 3c shows an example for query specialization: the

algorithm matches the query pattern ρ using pattern-aware

(E′), switches to pattern-oblivious (primitive M), and finishes

enumeration by adding an additional edge to the subgraph (E′′)
– producing subgraphs containing pattern ρ.

POSE+GF: Label-driven filter conditions defined in

terms of subgraphs can be pushed down to the data source via

...

pattern-oblivious
subgraph code

pattern-aware
subgraph code

Fig. 4. Hybrid PASE+POSE via mapping primitive.

graph filtering (GF) [17] whenever predicate p of primitive

F(p) is anti-monotonic: if p is false for some subgraph S,

then it also must be false for any subgraph S′ extended from

S. Instead of repeatedly generating invalid subgraphs and

filtering them during enumeration, the algorithm applies this

filtering directly to the input graph once as a previous step.

We highlight that this strategy can not be treated as a pre-

processing step since different filtering conditions imply in

different filtered graphs, leading to nontrivial data management

issues for large graphs. Figure 3d shows an example of such

algorithm for label search: application steps are submitted over

a reduced version of the input graph (G′ in line 4).

IV. EXPERIMENTAL EVALUATION

All experiments, unless otherwise specified, were run on

a cluster with 5 machines, each one having two CPU Intel

Xeon E5-2695v2 Ivy Bridge 2,4GHZ (12 cores each, 24

per machine), 64GB RAM, running RedHat Linux 7.6. The

machines are connected by Infiniband FDR (56Gb/s). All

the algorithms were implemented within the Fractal [17]

framework. We extended Fractal to support the novel mapping

primitive that allows combining paradigms into the same

application step. The source code and data are made available

at https://github.com/dccspeed/fractal.

Datasets (Table II): The datasets used in our evaluation

have been widely used previously to evaluate graph mining

algorithms and systems [18], [16], [36], [27]. Mico [2] is a

co-authorship network, Patents [37] models the citations of

patents published in the US, LiveJournal and Orkut [38] model

friendship in social networks, and Youtube [39] models posted

videos and how they are related. In our experiments all graphs

are loaded into the memory of workers using a compressed

sparse row graph representation (CSR).

TABLE II
REAL-WORLD DATASETS USED IN THE EXPERIMENTS.

|V (G)| |E(G)| max.deg. avg.deg. labels

Mico (MI) [2] 100K 1M 1.3K 22.3 29
Patents (PA) [37] 2.7M 13.9M 789 10.1 37

LiveJournal (LJ) [38] 3.9M 34.6M 14.8K 17.3 -
Youtube (YO) [39] 4.5M 43.9M 2.5K 19.1 108

Orkut (OR) [38] 3.07M 117.1M 33.3K 76.2 -

Performance evaluation measures: We consider a time

budget of 5 hours for each execution, which allows us to

study larger and more diverse GPM paradigms. Within each

execution, to be fair in our comparison, we divide the time

budget amongst application steps in a way that lighter steps

(concerning more dense and infrequent patterns in scale-free
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networks) are scheduled first so more time budget is left for

heavier steps. We consider two evaluation metrics: (1) the

runtime whenever it is not trivial to measure the application

throughput (particularly, for FSM); and (2) the normalized
throughput of aggregated subgraphs – in this case, we indicate

whether an execution reached the time limit with an asterisk

(*). Throughput allows us to determine the most efficient

strategy given a time budget. These metrics are widely used to

evaluate the performance of subgraph querying systems under

time constraints [40] and also in the context of streaming

analytics where aggregated results are continuously consumed

via a publish-subscribe framework [19].
Queries and matching order (Figure 5): For GPM prob-

lems such as query specialization (ρ-QS ), we generate input

patterns for each dataset based on their density. Specifically,

we implement a widely known unbiased sampling method

for subgraphs [41] to extract representative patterns of a

given size k: (1) Sk, sparse pattern with k vertices; and (2)

Dk, dense pattern with k vertices. Additionally, we adopt

the following heuristic for determining the order in which

patterns are matched when using the pattern-aware paradigm.

We match vertices having infrequent labels first, if there is a tie

match vertices with more symmetry breaking conditions [26].

Finally, if there is still a tie, we match vertices with more

backward edges in the pattern so that denser subpatterns are

matched first. In our experiments this heuristic is sufficient to

ensure that no arbitrarily low quality matching order penalizes

the pattern-aware approach. An in-depth study on various

subgraph matching approaches including orders can be found

at Sun et al. [42] and is out of the scope of this work. For

problems such as label search and minimal keyword search,

we take a similar approach to produce label sets: (1) Ik,

representing k infrequent labels that rarely occur together

within a subgraph; (2) Fk, representing k labels that most

frequently appearing together within a subgraph.
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A. Single-pattern algorithms

Pattern querying (ρ-PQ , Figure 6): Overall the POSE

strategy is inferior for all configurations considered, with many

executions that do not even find one single output subgraph

within the time limit. This confirms the natural hypothesis that

pattern-aware computation is best whenever the target patterns

are known and generated apriori. We also compare default

algorithms with optimized custom algorithm MCVC [43], [16]

(not to be confused with PASE+POSE in Section III-A), that

matches a pattern based on its minimum connected vertex

cover, to see how much more efficiency can be obtained

from pattern-awareness. Regarding the two remaining alter-

natives - PASE and Custom/MCVC - that leverage pattern

information during subgraph enumeration, we observe that the

latter outperforms the former in almost all configurations. The

exceptions to this rule happens in D8 for LiveJournal, and in

D6 for Orkut. A careful examination of these results offers

the nuanced but interesting finding that the frequency and

density of the target pattern alone is insufficient to explain

the best alternative. In fact, both of these exceptions represent

k-clique patterns and in this case, the minimum vertex cover

is maximal (k − 1 vertices). This makes the custom strategy

least effective because matching the cover is tantamount to

matching the entire pattern.
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Fig. 6. Throughput: Pattern querying (ρ-PQ).

Opportunities: We see opportunities for the development

of adaptable search strategies within GPM systems capable

of understanding and learning the most appropriate subgraph

exploration paradigm conditioned on pattern input and other

related contextual features of the graph.

B. Multi-pattern algorithms with pattern-driven filter

Frequent subgraph mining (k-FSM -α, Figure 7): As the

output of FSM is the set of frequent patterns and supports, no

trivial measure of execution progress exist and we report the

runtime of configurations in which at least one of the alterna-

tive algorithms finished within the time limit. Overall, POSE is

more effective in the majority of configurations, especially for

Patents dataset. An exception occurs in k-FSM -200K on You-

tube in which PASE exhibits better performance (Figure 7f).

This is directly related to the number of steps required by
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the PASE strategy, on those scenarios. For instance, while 3-
FSM -20K and 4-FSM -20K on Patents (Figure 7d) require

1529 and 4463 steps, respectively, 3-FSM -200K and 4-FSM -
200K on Youtube require much less: 34 and 115 respectively.

Not unexpectedly, PASE+POSE represents a middle ground in

terms of the number of steps required and its performance lies

between the two baseline strategies.
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Fig. 7. Runtime: Frequent subgraph mining (k-FSM -α).

Quasi cliques (k-QC -α, Figure 8): We see a vast

superiority of the PASE strategy. Compared to POSE and

PASE+POSE, the PASE approach is more efficient in these

settings since most queried patterns exist in the input graph and

the density threshold can be used to prune application steps

concerning sparse patterns, which makes the overhead PASE

incurs, payoff. However, as the size of subgraphs increases

and the number of pattern candidates in PASE increases ex-

ponentially (increasing overhead), it starts evaluating patterns

that are not found in the input graph. For instance, in Orkut,

PASE submits 5 application steps with no output for 7-QC -
0.5 and 41 for 8-QC -0.5, indicating that this quantity tends to

become greater and incurs in higher overhead for PASE, even

for unlabeled applications such as quasi clique finding.
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Fig. 8. Throughput: Quasi cliques (k-QC -α).

Query specialization (ρ-QS , Figure 9): The POSE strat-

egy - which relies on an expensive visit-filter operations in

order to ensure that the input pattern is contained in the

enumerated subgraph - performs poorly on this task. The PASE

approach is superior in almost all the scenarios, especially

in Mico, which is a very dense dataset with overrepresented

labels and patterns. Drilling into the comparative analysis of

PASE vs. PASE+POSE (hybrid variant), let us consider the

Youtube results for D7-QS and D8-QS , respectively. In the

former, the hybrid variant is more efficient and we observe that

261 of 648 (≈ 40%) steps in PASE finishes with zero output.

In the latter, PASE is slightly more efficient and 119 of 542
(≈ 22%) steps in PASE finishes with zero output. A similar be-

havior can be observed for the other scenarios, which leads us

to conclude that there is a correlation between spurious steps

(the ones that return zero output) and PASE performance. The

hybrid approach, on the other hand, is not prone to this because

it matches pattern ρ first (i.e. the subpattern), and then extends

it with one additional edge, which prevents the runtime from

spurious querying steps. Because this behavior depends on the

occurrence of each pattern/query in the underlying graph, it

is not trivial to determine prior to runtime which algorithm

will perform best. Given this challenge, the right hand side of

Figure 9 shows how throughput is perceived when the search

space exploration of subgraphs is randomized using a single

execution thread for 5 and 10 seconds. For the majority of

cases, with a small effort we are able to determine which

algorithm is prone to exhibit better performance overall. An

interesting behavior happens for D8-QS on Youtube in which

a 5 seconds throughput estimation is not enough to unveil the

real dominance of PASE over PASE+POSE, indicating that we

may need to sample the search space longer (in this example,

10 seconds) in case of long running application scenarios.
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Fig. 9. Throughput: Query specialization (ρ-QS ).

Opportunities: We see significant potential in hybrid

subgraph exploration paradigms (such as PASE+POSE) to-

wards mitigating PASE overheads of spurious querying of

patterns, especially for larger spaces where the number of

patterns becomes exponentially larger. The main insight is
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that although hybrid algorithms are no silver bullet for GPM

tasks, many application scenarios could really benefit from it,

opportunity that most GPM systems supporting either POSE

or PASE fail to exploit. It remains a challenge to determine

prior to execution which alternative may be the best on each

case and black-box heuristic approaches capable of estimating

the throughput of algorithms (such as the one presented in

Figure 9) may be an effective and lower-cost performance

optimization strategy for several application scenarios. We

also anticipate that GPM systems would benefit from prag-

matic (contextual) knowledge of the input data in order to

automatically determine the most appropriate paradigm (or

combination of them) for a particular task.

C. Multi-pattern algorithms with label-driven filter

Label search (k-LS -L, Figure 10): For Mico, the PASE

strategy exhibits larger overhead for small subgraph sizes since

it is modeled as a multi-step application, especially when the

amount of work is not substantial (e.g. 4-LS -I8). For larger

values of k this overhead starts to payoff and the performance

becomes roughly equivalent to the POSE approach. PASE also

tends to become more inefficient for larger subgraph sizes

(e.g. [4-8]-LS -F8 in Youtube). Such behavior is explained by

the skewness of patterns w.r.t. their frequency – in particular,

the algorithm spends much of the assigned time enumerating

subgraphs of an individual pattern that represents a very small

portion of the total output, affecting the rate at which output

is generated. To support this claim we show in the right

hand side of Figure 10 the number of subgraphs (output)

per pattern found in PASE: greater skew as subgraph size

k increases indicates that many small application steps sum

up increasingly larger submission overhead and consequently,

more substantial drops in performance for larger subgraph

sizes. Finally, the hybrid (POSE+GF) approach exhibit sub-

stantial improvement over the alternatives. This algorithm is

most effective for frequent labels (F8), since a larger valid

subgraph space (output) tends to exacerbate the overhead and

redundancy of filtering routines, applied on every enumeration

level. On Youtube - a larger dataset - graph reduction produces

a very interesting effect of reducing the working set at runtime,

improving memory efficiency and caching.

Opportunities: We see room for several novel strategies.

First scaling PASE for larger subgraph sizes. Second, taming

the exponential growth of pattern search through improved

scheduling and/or hybrid approaches combining PASE and

POSE to reduce the number of submitted tasks and their skew-

ness. Third, we believe that understanding the relationships

between label-driven filters and subgraph patterns may be used

to develop hybrid strategies to improve pruning efficiency by

preventing the submission of spurious application steps.

V. RELATED WORK

Understanding graph mining computation: GraphMine-

Suite [44] is a benchmark for evaluating graph mining algo-

rithms. The system provides a set of tools and methodologies

for evaluating and tuning properties and behaviors of specific
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Fig. 10. Throughput: Label search (k-LS -L).

graph mining algorithms (i.e., not necessarily related to pattern

mining) implemented over a standard set algebra. The authors

provide use cases for multi-pattern algorithms with pattern-
driven filter only but not from a multi-paradigm perspective.

Indeed, the scope is not on abstractions and programming

expressiveness for graph pattern mining systems. Besides that,

the specificity of each algorithm and the lack of standard

strategies for searching the space of subgraphs makes the

task of reasoning about different paradigms not trivial, which

justifies our approach of evaluating GPM algorithms.

Subgraph enumeration for general-purpose GPM systems

has been explored in detail in the context of pattern-aware

frameworks. Pattern analysis [28] can be used as an effective

tool for optimizing exploration plans of querying patterns.

The pattern information about subgraphs of interest is used

to reuse computation and to reduce the depth of enumeration.

Dryadic [45] is a graph pattern mining system that proposes

an intermediate state representation to pattern matching, which

allows a more systematic reasoning about optimized explo-

ration plans. While these systems focus on how to optimize

exploration plans for pattern-aware computations, our work

takes a step back and handles a more fundamental challenge

concerning the trade-offs between pattern-aware and pattern-

oblivious paradigms on real problems. Also, they only consider

a subset of application scenarios in their experimental evalua-

tion, missing multi-pattern algorithms with label-driven filter,
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so important for graph databases (e.g. Neo4j).

Pattern-oblivious GPM systems: Arabesque [18] repre-

sents the first generation of GPM systems that operate on a

subgraph-centric model for graph processing with focus on

programming productivity. On the other end of the spectrum,

G-Miner [36] is a MPI-based C++ framework for graph pattern

mining and subgraph exploration. Unlike the above, G-Miner

takes a fine-tuning approach to system design and provide a

low-level interface for GPM algorithms at the cost of produc-

tivity. Tesseract [19] is a distributed system for incremental

graph pattern mining where the input graph may change during

computation. While Tesseract’s design, based on two user-

defined functions match and filter, is simple enough to accom-

modate many applications (including static graphs), it lacks

the flexibility to provide multi-paradigm algorithm design.

Rstream [46] is a join-based single-machine GPM system that

leverages out-of-core environments to store intermediate data,

which for combinatorial GPM algorithms quickly becomes

infeasible to manage in terms of I/O. Pangolin [20] is a GPM

system that leverages a breadth-first subgraph exploration

strategy to facilitate load balancing and improve data access

on GPUs. The materialization of subgraphs in-memory may

incur in high memory demand, especially for scarce memory

architectures such as GPU. Each of these systems adopt its

very particular application model for a very specific execution

environment, which prevents a fair comparison among algo-

rithms. In this work we handle this limitation by adopting a

more general model for representing GPM algorithms.

Pattern-aware GPM systems: Recently pattern-awareness

has been assumed to be standard for efficient GPM compu-

tation. Automine [27] is single-machine system for general

purpose graph pattern mining programming. The system gen-

erates C++ optimized code for subgraph enumeration, given

template patterns to be enumerated. Peregrine [16] is a single-

machine multi-threaded system for graph pattern mining that

uses an execution model centered on the subgraph patterns.

In particular, Peregrine expresses any GPM computation as

multiple pattern querying routine – in many senses, similar

to what Automine [27] proposes. G2Miner [21] is a pattern-

aware system optimized with a parallelization strategy and

memory allocation schemes specifically designed for GPU

architectures and thus, not particularly adequate for evaluation

of multiple paradigms on shared-memory distributed systems.

This work puts pattern-awareness into perspective and shows

that it can not be considered the state-of-the-art design for

every application scenario, which may guide practitioners to

better understand trade-offs involved in the design of GPM

systems.

VI. CONCLUSIONS

This work offers a comprehensive analysis of paradigms

for subgraph enumeration in the context of general-purpose

GPM systems. Our methodology categorizes state-of-the-art

GPM strategies, tasks and optimizations in a concise and

expressive model for algorithms, allowing a fair and compre-

hensive comparison among different search and enumeration

paradigms. Our wide range of application scenarios considered

reveals that there is no silver bullet when it comes to choosing

subgraph enumeration paradigms, be pattern-aware or pattern-

oblivious. In particular, we confirm that pattern-oblivious is

inferior whenever the search space is pruned based on pattern

structure, but, on the other hand, pattern-aware suffers from

an exponentially increasing overhead of querying individual

patterns one at a time, especially in distributed environments.

Because these bottlenecks are closely related to increased

communication and load imbalance, this can only be exacer-

bated in larger scale settings. Also, our findings go beyond

performance comparison and show promising directions in

exploring hybrid multi-paradigm approaches, in proposing

scheduling routines specifically designed for the pattern-aware

setting, and in leveraging latent pruning conditions that can be

applied directly to the input graph or inferred based on pattern

and/or labeling information.

ACKNOWLEDGMENT

This work was partially funded by Fapemig, CNPq,

CAPES, and by projects CNPq/AWS (440.088/2020-8),

INCTCyber (MCT/CNPq 465714/2014-5) and MASWeb

(FAPEMIGPRONEX APQ-01400-14). The authors acknowl-

edge the National Laboratory for Scientific Computing (LNC-

C/MCTI, Brazil) for providing HPC resources of the SDumont

supercomputer. SP was partially supported by the NSF AI-

Edge grant CNS-2112471, and would like to acknowledge the

NSF MRI OAC-2018627 grant for additional research experi-

mentation resources. Any opinions, findings, and conclusions

in this material are those of the author(s) and may not reflect

the views of the respective funding agency.

REFERENCES

[1] M. Agrawal, M. Zitnik, and J. Leskovec, “Large-scale analysis of
disease pathways in the human interactome,” Pacific Symposium on
Biocomputing. Pacific Symposium on Biocomputing, vol. 23, pp. 111–
122, 2018.

[2] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis, “Grami:
Frequent subgraph and pattern mining in a single large graph,” Proc.
VLDB Endow., vol. 7, no. 7, pp. 517–528, Mar. 2014.

[3] G. Buehrer, S. Parthasarathy, and Y.-K. Chen, “Adaptive parallel graph
mining for cmp architectures,” in Proceedings of the Sixth International
Conference on Data Mining, ser. ICDM ’06. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 97–106.

[4] G. Buehrer, S. Parthasarathy, and M. Goyder, “Data mining on the cell
broadband engine,” in Proceedings of the 22nd Annual International
Conference on Supercomputing, ICS, P. Zhou, Ed., 2008.

[5] S. Elbassuoni and R. Blanco, “Keyword search over rdf graphs,” in
Proceedings of the 20th ACM International Conference on Information
and Knowledge Management, ser. CIKM ’11. New York, NY, USA:
ACM, 2011, pp. 237–242.

[6] L. Kovanen, M. Karsai, K. Kaski, J. Kertész, and J. Saramäki, “Temporal
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